Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

LIGHT AND ELECTRON MICROSCOPIC EXAMINATION OF THE EMBRYO AND ENDOSPERM DEVELOPMENT IN THE NATURAL TETRAPLOID TRIFOLIUM PRATENSE L.

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The ultrastructure of the embryo cells in ovules, from fertilization to the embryo maturity stage in the natural tetraploid Trifolium pratense L. that has a very low rate of seed formation, was examined. Following fertilization the vacuolar organization in the zygote changes. The zygote was a polarized cell and contained a central nucleus, mitochondria, plastids, ribosomes. and lipid bodies. Ribosomal concentration increases significantly after fertilization. The first division of the zygote was transverse or oblique and unequal. The primary endosperm nucleus divides before the zygote nucleus, forming a coenocytic nuclear endosperm; however, part of it later becomes cellular. At the earliest stage of embryo development, the cells were vacuolate, and plastids and mitochondria were simple in structure. During all stages of embryogenesis the suspensor cells were less electron dense than the adjoining embryo cells. Endosperm cellularization begins when the embryo has developed the globular embryo proper. Cellularization starts at the micropylar end of the embryo sac and progresses toward the chalazal end. Dictyosome activity, ribosomal aggregation, and the amount of rough endoplasmic reticulum were highest during the late globular embryo stage. In addition, the vacuolar volume in the cells was reduced. Lipid bodies were present up to the early globular stage, then disappeared. The inner cell walls of the embryo were thin, with many plasmodesmata. These walls begin to thicken at the late globular stage. The results show a corresponding increase in the amount and activity of the metabolic machinery as the development of the embryo progresses.

Affiliations: 1: Department of Biology, Faculty of Science, University of Ankara

10.1080/07929978.1996.10676651
/content/journals/10.1080/07929978.1996.10676651
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1080/07929978.1996.10676651
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1080/07929978.1996.10676651
Loading

Article metrics loading...

/content/journals/10.1080/07929978.1996.10676651
1996-05-13
2018-09-24

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation