Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here


No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The unicellular alga Dunaliella is unique in its ability to adapt to extreme environmental conditions. Adaptation to extreme salinity involves short-term and long-term responses. The former include osmotic adjustment by accumulation of large amounts of intracellular glycerol and efficient elimination of Na+ ions by plasma membrane transporters. The latter involves synthesis of two extrinsic plasma membrane proteins: a carbonic anhydrase and a novel type of a transferrin-like protein. These proteins are associated with acquisition of CO2 and Fe, respectively, whose availability is diminished in high salinity, limiting algal growth. Both proteins are functional over a wide range of salt concentrations and differ in structure from their mesophilic counterparts in possessing additional internal repeats and in having higher ratios of acidic: basic amino acids. Dunaliella acidophila survives at pH 0–1 by overexpression of a potent plasma membrane H+-ATPase which provides effective capacity for elimination of protons. Sequence comparisons of the ATPase genes from halophilic and acidophilic species reveals variations in charged amino acid composition within a distinct extrinsic C-terminal domain of the protein. Dunaliella bardawil adapts to high light intensity by several strategies: it accumulates large amounts of β-carotene which screens the photosynthetic system against photoinhibition and it modifies the photosynthetic machinery by synthesis of a special light-harvesting protein which presumably functions in dissipation of excessive light energy. Both responses depend on synthesis of special proteins and enzymes. Signal transduction mechanisms mediating stress responses in Dunaliella are poorly understood. Sensing osmotic/salinity changes involves specific plasma membrane sterols and activation of a plasma membrane protein kinase. Induction of β-carotene accumulation can be mimicked by reactive oxygen species generators.

Affiliations: 1: Department of Biological Chemistry, The Weizmann Institue of Science


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation