Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effects of climate change on threatened Spanish medicinal and aromatic species: predicting future trends and defining conservation guidelines

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Climate change will impact several ecosystems, and the resilience of the weakest links of the ecological networks may be decisive in maintaining the ecological structure. The assessment of tendencies in the distribution and resilience of endangered medicinal species against global change can be an excellent tool to predict and minimize future negative effects, even more so if we consider that these species may be useful to us. Spain is one of the richest countries in plant diversity along the Mediterranean basin, and many representatives of the Spanish flora are medicinal plants. Under scenarios of climate change, the distribution ranges of many of these species are likely to alter. In this paper we used ecological niche modeling to predict future changes in the distribution of 41 medicinal plants included in the 2013 assessment of threatened species in Spain. We generated climate-based niche models for each medicinal species and projected them for each decade from 2010 until 2080. Our results identified and prioritized the most vulnerable species and areas to future predicted changes. These results should be useful for conservation planning and especially for prioritizing areas for protection.

Affiliations: 1: CE3C – Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal ; 2: UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, Vancouver, Canada ; 3: Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain ; 4: Department of Plant Sciences, University of Oxford, Oxford, United Kingdom


Full text loading...


Data & Media loading...

1. Akçakaya HR,, Butchart SHM,, Mace GM,, Stuart SN,, Hilton-Taylor C. 2006. "Use and misuse of the IUCN Red List criteria in projecting climate change impacts on biodiversity". Glob Chang Biol. Vol 12:20372043. [Crossref]
2. Bellard C,, Bertelsmeier C,, Leadley P,, Thuiller W,, Courchamp F. 2012. "Impacts of climate change on the future of biodiversity". Ecol Lett. Vol 15:365377. [Crossref]
3. Blanca G. 2003. "El ruedo ibérico y la manzanilla de Sierra Nevada". Cons Vegetal. Vol 8:1011.
4. Draper D,, Marques I. 2007. "Taxus baccata en Portugal y sus perspectivas futuras frente al cambio global". Proceedings of El tejo en el Mediterráneo occidental: Jornadas Internacionales sobre el tejo y las tejeras en el Mediterráneo occidental; Conselleria de Territori i Habitatge. Generalitat Valenciana.
5. Draper D,, Rubio Teso ML,, Marques I. 2011. "Defining collecting protocols to improve genebank diversity of the genus Mentha L. in Spain". Adv Environ Biol. Vol 5:29562959.
6. Elith J,, Phillips SJ,, Hastie T,, Dudík M,, Chee YE,, Yates CJ. 2011. "A statistical explanation of MaxEnt for ecologists". Divers Distrib. Vol 17:4357. [Crossref]
7. Engler R,, Guisan A,, Rechsteiner L. 2004. "An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data". J Appl Ecol. Vol 41:263274. [Crossref]
8. Felicísimo ÁM, editor. 2011. "Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española. 2. Flora y vegetación". Madrid: Oficina Española de Cambio Climático, Ministerio de Medio Ambiente y Medio Rural y Marino.
9. Greaves RK,, Sanderson RA,, Rushton SP. 2006. "Predicting species occurrence using information-theoretic approaches and significance testing: an example of dormouse distribution in Cumbria, UK". Biol Conserv. Vol 130:239250. [Crossref]
10. Guisan A,, Broenimann O,, Engler R,, Vust M,, Yoccoz NG,, Lehmann A,, Zimmermann NE. 2006. "Using niche-based models to improve the sampling of rare species". Conserv Biol. Vol 20:501511. [Crossref]
11. Hanewinkel M,, Cullmann DA,, Schelhaas MJ,, Nabuurs GJ,, Zimmermann NE. 2012. "Climate change may cause severe loss in economic value of European forestland". Nat Clim Change. Vol 3:203207.
12. Hijmans RJ,, Cameron SE,, Parra JL,, Jones PG,, Jarvis A. 2005. "Very high resolution interpolated climate surfaces for global land areas". Int. J. Climatol. Vol 25:19651978. [Crossref]
13. Huang LQ,, Guo LP,, Cui GH,, Xiao PG,, Wang YY. 2005. "Research on basic theory of sustainable utilization of traditional Chinese medicine". Res Info Trad Chinese Med. Vol 7:46.
14. IPCC. 2007. Summary for policymakers in climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors]. Cambridge, UK: Cambridge University Press.
15. Isik K. 2011. "Rare and endemic species: why are they prone to extinction?" Turk J Bot. Vol 35:411417.
16. IUCN. 2001. IUCN Red List categories and criteria: version 3.1. Gland and Cambridge: IUCN Species Survival Commission.
17. IUCN. 2016. "Guidelines for using the IUCN Red List categories and criteria". Version 12. [Internet]. Available from:
18. Jiménez-Alfaro B,, Draper D,, Nogués-Bravo D. 2012. "Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates". Biol Conserv. Vol 147:190196. [Crossref]
19. Kadis K,, Thanos CA,, Lumbreras EL. 2013. Plant micro-reserves: from theory to practice. Athens: Utopia Publishing.
20. Laguna E,, Ballester G,, Fabregat C,, Olivares A,, Serra L,, Deltoro V,, Pérez-Botella J,, Pérez-Rovira P,, Ranz J. 2001. "Plant micro-reserves: a new model of micro protected areas, Spain". Re-Introduction News. Vol 20:1921.
21. Laguna E,, Fos S,, Jiménez J,, Volis S. 2016. "Role of micro-reserves in conservation of endemic, rare and endangered plants of the Valencian region (Eastern Spain)". Isr J Plant Sci. Vol 63:320332. DOI: 10.1080/07929978.2016.1256131
22. Li L,, Zhang B,, Xiao P,, Qi Y,, Zhang Z,, Liu H,, Li X,, Wang G,, Terwei A. 2016. "Patterns and environmental determinants of medicinal plant: vascular plant ratios in Xinjiang, Northwest China". PLoS One. Vol 11:e0158405. [Crossref]
23. Mathe A. 2009. "Medicinal and aromatic plants". In: Soils, plant growth and crop production. Oxford. UK: EOLSS Publishers.
24. Milne DJ,, Fisher A,, Pavey CR. 2006. "Models of the habitat associations and distributions of insectivorous bats of the Top End of the Northern Territory, Australia". Biol Conserv. Vol 130:370385. [Crossref]
25. Moreno-Saiz JC,, Saiz-Ollero H,, Muñoz-Rodríguez P,, López-Huerta R,, Sánchez de Dios R,, Domínguez F,, Cabal C,, Güemes J,, Carrió E,, Blasco MP, et al. 2013. Trabajos integrados de síntesis y análisis para la consecución de los objetivos 1, 2, 5 y 7 de la Estrategia Global de Conservación Vegetal (GSPC) en relación a la flora vascular en España. Informe de entrega final. Madrid: Universidad Autónoma de Madrid.
26. Muñoz-Rodríguez P,, Draper Munt D,, Moreno Saiz JC. 2016. "Global strategy for plant conservation: inadequate in situ conservation of threatened flora in Spain". Isr J Plant Sci. Vol 63:297308. DOI: 10.1080/07929978.2016.1257105
27. Ortega-Huerta MA,, Peterson AT. 2008. "Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods". Revista Mexicana de Biodiversidad. Vol 79:205216.
28. Pardo de Santayana M,, Morales R,, Aceituno-Mata L,, Molina M. 2014. Inventario español de los conocimientos tradicionales relativos a la biodiversidad. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.
29. Parra-Quijano M,, Iriondo JM,, Torres E. 2012. "Review. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources". Span J Agric Res. Vol 10:419429. [Crossref]
30. Pauls SU,, Nowak C,, Bálint M,, Pfenninger M. 2013. "The impact of global climate change on genetic diversity within populations and species". Mol Ecol. Vol 22:925946. [Crossref]
31. Pearson RG,, Raxworthy CJ,, Nakamura M,, Peterson AT. 2007. "Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar". J Biogeogr.Vol 34:102117.
32. Phillips SJ,, Anderson RP,, Schapire RE. 2006. "Maximum entropy modeling of species geographic distributions". Ecol Model. Vol 1/25/;190:231259.
33. Ramirez J,, Jarvis A. 2008. "High resolution statistically downscaled future climate surfaces". International Center for Tropical Agriculture (CIAT); CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Cali, Colombia.
34. Rubio Teso ML,, Iriondo JM,, Parra M,, Torres E. 2013. "National strategy for the conservation of crop wild relatives of Spain". [Internet]. Available from:
35. Salick J,, Fang Z,, Byg A. 2009. "Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change". Glob Environ Change. Vol 19:147155. [Crossref]
36. Sergio C,, Figueira R,, Draper D,, Menezes R,, Sousa A. 2007. "Modelling bryophyte distribution based on ecological information for extent of occurrence assessment". Biol Conserv. Vol 135:341351. [Crossref]
37. Suffling R. 1995. "Can disturbance determine vegetation distribution during climate warming? A boreal test". J Biogeogr. Vol 22:501508. [Crossref]
38. Syfert MM,, Joppa L,, Smith MJ,, Coomes MA,, Bachman SP,, Brummitt NA. 2014. "Using species distribution models to inform IUCN Red List assessments". Biol Conserv. Vol 177:174184. [Crossref]
39. Thorn JS,. Nijman V,, Smith D,, Nekaris KAI. 2009. "Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus)". Divers Distrib. Vol 15:289298. [Crossref]
40. Thuiller W,, Lavorel S,, Araujo MB,, Sykes MT,, Prentice IC. 2005. "Climate change threats to plant diversity in Europe". Proc Natl Acad Sci USA. Vol 102:82458250. [Crossref]
41. Trenberth KE,, Dai A,, Rasmussen RM,, Parsons DB. 2003. "The changing character of precipitation". B Am Meteorol Soc. Vol 84:12051217. [Crossref]
42. Watling JI,, Romañach SS,, Bucklin DN,, Speroterra C,, Brandt LA,, Pearlstine LG,, Mazzotti FJ. 2012. "Do bioclimate variables improve performance of climate envelope models?" Ecol Model. Vol 11/10/;246:7985.
43. Williams SE,, Shoo LP,, Isaac JL,, Hoffmann AA,, Langham G. 2008. "Towards an integrated framework for assessing the vulnerability of species to climate change". PLoS Biol. Vol 6(12):e325. [Crossref]
44. Zhu K,, Woodall CW,, Ghosh S,, Gelfand AE,, Clark JS. 2014. "Dual impacts of climate change: forest migration and turnover through life history". Glob Change Biol. Vol 20:251264. [Crossref]
45. Zweig MH,, Campbell G. 1993. "Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine". Clin Chem. Vol 39:561577.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation