Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The frequency dependence of receptor potentials in hair cells of the mouse utricle

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Primary Sensory Neuron
For more content, see Sensory Neuron.

The mechanoelectrical transduction currents of hair cells in the mouse utricle adapt at varying rates to step deflections of the hair bundles. We consider contributions of this adaptation process and of input resistance and membrane capacitance to the frequency dependence of the receptor potential. Whole-cell recordings of transduction current and receptor potential were made from hair cells in the excised epithelium of the mouse utricle. Hair bundles were deflected by a fluid jet with step and sinusoidal waveforms. In type II cells, the receptor potential was a bandpass function of stimulus frequency. The adaptation rate of the transduction current, measured in response to step bundle deflections, accounted for much of the roll-off in the receptor potential at low frequencies of sinusoidal deflections. Corner frequencies predicted from the adaptation time course varied from 2 to 60 Hz. Voltage-gated conductances also contributed. Roll-off of the receptor potential at the high-frequency end may largely reflect input resistance and capacitance. Corner frequencies predicted by estimated membrane time constants varied from 30 to 150 Hz. In type I cells, slower or no adaptation and shorter membrane time constants predict larger response bandwidths. Frequency tuning in vivo will reflect other factors, including the mechanical response of the otolith and otolithic membrane to head movements.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Primary Sensory Neuron — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation