Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Recovery of infective juveniles of the entomopathogenic nematode Steinernema carpocapsae via factors produced by insect cells and symbiotic bacteria

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Entomopathogenic nematodes, Steinernema carpocapsae, show 'recovery' from the dauer form as infective juveniles (IJ) up to fourth-stage juveniles when host invasion occurs. This recovery also occurs within an insect cell line culturing system. Here we addressed the factor(s) that induce recovery. When IJ were exposed to cell medium obtained from the cultivation of Sf9 cell lines derived from armyworms (Spodoptera frugiperda), approximately 50% of IJ recovered after 4 h. By 16 h, 90% of the IJ had undergone recovery. Other insect cell lines such as silkworm (Bombyx mori)-derived BmN cells and fruit fly (Drosophila melanogaster)-derived S2 cells also secreted the recovery inducing factor(s). By contrast, mammalian cells (NIH/3T3 and HeLa) had no effect on nematode recovery. Our data also suggest that symbiotic bacteria are involved in IJ recovery; axenic IJ did not recover in the cell-cultured medium. When symbiotic bacteria isolated from IJ were propagated within the cell-cultured medium, the supernatant gained recovery-inducing activity against axenic IJ. From these results, we conclude that IJ recovery in S. carpocapsae is induced by multiple factor(s) secreted from insect cells and symbiont bacteria.

Affiliations: 1: Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan;, Email:; 2: Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation