Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Development of Caenorhabditis elegans dauer larvae in growing populations

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

For species that rely on ephemeral resources, genotype fitness will depend on traits that affect both population growth rates and dispersal. Understanding how such traits are related is central to understanding how they may evolve. Natural populations of Caenorhabditis elegans exhibit rapid population growth within resource-rich patches of decaying organic material and subsequent dispersal, primarily as developmentally-arrested dauer larvae, between patches. The properties of growing populations of C. elegans are, however, poorly understood. Here we show that food availability, dauer pheromone (a measure of conspecific population density) and temperature affect dauer larvae development in growing populations as would be predicted from analyses of single cohorts of worms. We also show that as food patch size increases, dauer larvae are formed prior to patch exhaustion and that the number of dauer larvae present increases after the patch is exhausted, i.e., worms that had not completed development as dauer larvae when the food was exhausted continue development in the absence of bacterial food. Crucially, the subsequent reproductive fitness of dauer larvae that complete development after the exhaustion of the bacterial food patch is reduced in comparison with dauer larvae that develop prior to patch exhaustion. These results demonstrate that population level analyses of C. elegans are feasible, support previous studies of the environmental factors affecting dauer larvae development and suggest an adaptive benefit for variation between isolates in the sensitivity of dauer larvae development.

Affiliations: 1: Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury CT1 1QU, UK


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation