Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effects of increased salinity on tadpoles of two anurans from a Caribbean coastal wetland in relation to their natural abundance

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

Many amphibians depend on wetland ecosystems for reproduction and survival, and coastal wetlands are not the exception. Recent advances on climate change research predict a reduction in land cover of coastal wetlands due to sea-level rise in response to global warming. Although this scenario will contribute to further amphibian population declines worldwide the impacts of sea-level rise and its related salt water intrusion on anuran assemblages in coastal wetlands remain largely unknown. I documented patterns of abundance of the native Caribbean white-lipped frog (Leptodactylus albilabris) and the introduced marine toad (Bufo marinus) along an inland-to-coastal salinity gradient in Puerto Rico. In addition, I investigated the effects of increasing salinity on larval growth and survival to metamorphosis in L. albilabris and B. marinus in laboratory experiments. In the field, relative abundance of adults of L. albilabris decreased with increasing salinity, while B. marinus showed the opposite pattern. Laboratory experiments with L. albilabris and B. marinus revealed that percentage of larvae surviving to metamorphosis in both species was greatly reduced in 22-25% seawater (8 ppt), which is within salinity levels found in their natural distribution. In this salinity level, the native L. albilabris showed ∼100% metamorphosis failure while the introduced B. marinus showed ∼60% metamorphosis failure. The reduction in metamorphosis was due to high mortality in L. albilabris and was accompanied with morphological abnormalities in B. marinus. Tadpoles of only L. albilabris reared for four weeks showed significant weight loss at 8 ppt, but showed no difference in length. These results suggest that anuran tadpoles may be living near their physiological limit for salinity in the studied wetland. Conservation implications are profound, however, as salt water intrusion and urban encroaching inland may result in anuran population replacement, from native species to introduced species in this wetland.

Affiliations: 1: Department of Biology, University of Puerto Rico-Río Piedras Campus, P.O. Box 23360, San Juan, Puerto Rico, 00931-3360;, Email:


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation