Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Tandem evolution of diet and chemosensory responses in snakes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Amphibia-Reptilia

Adaptations to foraging requirements have molded sensory capacities of animals in intriguing and sometimes spectacular ways, including evolution of echolocation by bats and infrared detection by pitvipers, as well as of location of prey using lingually sampled chemical cues by actively foraging lizards. Among snakes, specialized diets and geographic differences in diets have evolved many times. Because snakes identify prey by vomerolfactory analysis of chemicals sampled by tongue-flicking, it may be predicted that responsiveness to lingually sampled chemical cues corresponds to diet: It should be much stronger to prey included in than excluded from specialized diets and should covary with geographic dietary differences in prey generalists. Breeding studies in Thamnophis elegans showed that greater responsiveness to local prey in populations having geographically variable diets has a heritable component. Whether strong chemosensory response evolves to match current diet has not been established for snakes using the comparative method. For all paired comparisons of dietary change now available, chemosensory behavior changed so that strongest responses were limited to cues from the current prey. Because diets were specialized and snakes were ingestively naive hatchlings in almost all comparisons, the basis for observed relationships is innate rather than experiential. Snake chemosensory responses have evolved to match current diets.

Affiliations: 1: Department of Biology, Indiana University Purdue University Fort Wayne, Fort Wayne, IN 46805, USA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation