Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Inter-annual weather variability can drive the outcome of predator prey match in ponds

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Amphibia-Reptilia

The matching of life-history-events to the availability of prey is essential for the growth and development of predators. Mismatches can constrain individuals to complete life-cycle steps in time and in ephemeral habitats it can lead to mortality unless compensation mechanisms exist. Here we measured the performance of a population of European fire-salamanders ( Salamandra salamandra) and their prey in ephemeral ponds. We analysed how short time inter-annual variability of yearly rainfall and temperature (two consecutive years, 2011 and 2012) affects matching of predator and prey and how two different weather scenarios influenced the predator’s population structure. A single species (larvae of the mosquito Aedes vexans) dominates the prey community here, which occurs in high quantities only in the beginning of the season. When the occurrence of prey and predator matched during a period of sufficiently high temperatures (as in 2011), initial growth of the salamander larvae was high and population size development homogeneous. At low temperatures during matching of predatory and prey (as in 2012), the initial growth was low but the salamander larvae developed into two distinctly different sizes. Further, some individuals in the large cohort became cannibalistic and initial size differences increased. As a result, the latest (smallest) cohort disappeared completely. Temperature measurements and estimation of maximal growth rates revealed that temperature differences alone could explain the different early development between years. Our data show that weather conditions (rainfall; temperature during early growth phase) strongly determined the performance of salamander larvae in ponds. Our data also add to the match-mismatch concept that abiotic growth conditions (here: low temperature) could prevent efficient conversion of prey- into predator-biomass despite high prey availability.

Affiliations: 1: 1Helmholtz-Centre for Environmental Research – UFZ, Department River Ecology, Brueckstr. 3a, D-39114 Magdeburg, Germany; 2: 2Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany

Loading data from figshare Loading data from figshare

Full text loading...


Data & Media loading...

1. Benke A.C. , Smock J.B.W. , Huryn A.D. , Smock L.A. , Wallace J.B. ( 1999): "Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States". J. North Am. Benthol. Soc. Vol 18: 308- 343. [Crossref]
2. Blaustein J. , Sadeh A. , Blaustein L. ( 2013): "Influence of fire salamander larvae on among-pool distribution of mosquito egg rafts: oviposition habitat selection or egg raft predation?" Hydrobiologia Vol 723: 157- 165. [Crossref]
3. Blaustein L. , Friedman J. , Fahima T. ( 1996): "Larval Salamandradrive temporary pool community dynamics: Evidence from an artificial pool experiment". Oikos Vol 76: 392- 402. [Crossref]
4. Brooks R.T. ( 2000): "Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (‘vernal’) ponds in central Massachusetts, USA". Wetlands Vol 20: 707- 715. [Crossref]
5. Buckley D. , Alcobendas M. , García-París M. , Wake M.H. ( 2007): "Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra ". Evol. Dev. Vol 9: 105- 115. [Crossref]
6. Byström P. ( 2006): "Recruitment pulses induce cannibalistic giants in Arctic char". J. Anim. Ecol. Vol 75: 434- 444. [Crossref]
7. Caspers B.A. , Krause E.T. , Hendrix R. , Kopp M. , Rupp O. , Rosentreter K. , Steinfartz S. ( 2014): "The more the better – polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders ( Salamandra salamandra)". Mol. Ecol. Vol 23: 239- 250. [Crossref]
8. Claessen D. , De Roos A. , Persson L. ( 2000): "Dwarfs and giants: cannibalism and competition in size-structured populations". Am. Nat. Vol 155: 219- 237. [Crossref]
9. Cohen M. , Yeheskely-Hayon D. , Warburg M.R. , Davidson D. , Halevi G. , Sharon R. ( 2006): "Differential growth identified in salamander larvae half-sib cohorts: survival strategy?" Dev. Growth Differ. Vol 48: 537- 548. [Crossref]
10. Crump M.L. ( 1979): "Intra-population variability in energy parameters of the salamander Plethodon cinereus ". Oecologia Vol 247: 235- 247. [Crossref]
11. Cushing D.H. ( 1969): "Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis". Adv. Mar. Biol. Vol 26: 249- 293. [Crossref]
12. Degani G. , Goldenberg S. , Warburg M.R. ( 1980): "Cannibalistic phenomena in Salamandra salamandralarvae in certain water bodies and under experimental conditions". Hydrobiologia Vol 75: 123- 128. [Crossref]
13. Dumont H.J. , Van De Velde I. , Dumont S. ( 1975): "The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters". Oecologia Vol 19: 75- 97. [Crossref]
14. Durant J. , Hjermann D. , Ottersen G. , Stenseth N. ( 2007): "Climate and the match or mismatch between predator requirements and resource availability". Clim. Res. Vol 33: 271- 283. [Crossref]
15. Durant J.M. , Hjermann D.O. , Anker-Nilssen T. , Beaugrand G. , Mysterud A. , Pettorelli N. , Stenseth N.C. ( 2005): "Timing and abundance as key mechanisms affecting trophic interactions in variable environments". Ecol. Lett. Vol 8: 952- 958. [Crossref]
16. Ebert T.A. , Balko M.L. ( 1987): "Temporary pools as islands in space and in time: the biota of vernal pools in San Diego, southern California, USA". Arch. Hydrobiol. Vol 110: 101- 123.
17. Eitam A. , Blaustein L. , Mangel M. ( 2005): "Density and intercohort priority effects on larval Salamandra salamandrain temporary pools". Oecologia Vol 146: 36- 42. [Crossref]
18. Gasche P. ( 1939): "Beitrag zur Kentnis der Entwicklung von Salamandra salamandraL mit besonderer Berücksichtigung der Winterphase, der Metamorphose und des Verhaltens der Schilddrüse ( Glandula thyreoidea)". Rev. Suisse Zool. Vol 46: 403- 548.
19. Griffiths R.A. ( 1996): "Temporary ponds as amphibian habitats". Aquat. Conserv. Mar. Freshw. Ecosyst. Vol 7: 119- 126. [Crossref]
20. Helm B. , Ben-Shlomo R. , Sheriff M.J. , Hut R.A. , Foster R. , Barnes B.M. , Dominoni D. ( 2013): "Annual rhythms that underlie phenology: biological time-keeping meets environmental change". Proc. Biol. Sci. Vol 280: 20130016. DOI: . [Crossref]
21. Hoffmann A.A. , Sgrò C.M. ( 2011): "Climate change and evolutionary adaptation". Nature Vol 470: 479- 485. [Crossref]
22. Huss M. , Bystrom P. , Persson L. ( 2010): "Effects of ontogenetic scaling on resource exploitation and cohort size distributions". Oikos Vol 119: 384- 392. [Crossref]
23. Joger U. ( 1981): "Die Wassergefüllte Wagenspur, Untersuchungen an einem antropogenen Miniatur-Ökosystem". Decheniana Vol 134: 215- 226.
24. Lincoln F. ( 1930): Calculating Waterfowl Abundance on the Basis of Banding Returns. U.S. Dept. of Agriculture, Washington D.C.
25. Manenti R. , Pennati R. , Ficetola G.F. ( 2015): "The role of density and resource competition in determining aggressive behavior in salamanders". J. Zool.( in press).
26. Manenti R. , Ficetola G.F. ( 2011): "Caves as breeding sites for Salamandra salamandra: habitat selection, larval development and conservation issues". North West J. Vol 7: 304- 309.
27. Manenti R. , Ficetola G.F. , Bianchi B. , De Bernardi F. ( 2009): "Habitat features and distribution of Salamandra salamandrain underground springs". Acta Herpetol. Vol 4: 143- 151.
28. Ovaskainen O. , Skorokhodova S. , Yakovleva M. , Sukhov A. , Kutenkov A. , Kutenkova N. , Shcherbakov A. ( 2013): "Community-level phenological response to climate change". Proc. Natl. Acad. Sci. Vol 110: 13434- 13439. [Crossref]
29. Peus F. ( 1972): "Ueber das Subgenus Aedessensu stricto in Deutschland (Diptera, Culicidae)". Z. Angew. Entomol. Vol 72: 177- 194. [Crossref]
30. Polis G.A. ( 1981): "The evolution and dynamics of intraspecific predation". Annu. Rev. Ecol. Syst. Vol 12: 225- 251. [Crossref]
31. Reinhardt T. ( 2014): New home, new life: The influence of shifts in fire-salamander larval habitat choice on population perfomance and their effect on structure and functioning of pond invertebrate communities. Dissertation, Technische Universität Dresden.
32. Reinhardt T. , Paetzold A. , Steinfartz S. , Weitere M. ( 2013): "Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies". Oecologia Vol 173: 281- 291. [Crossref]
33. Reques R. , Tejedo M. ( 1996): "Intraspecific aggressive behaviour in fire salamander larvae ( Salamandra salamandra): the effects of density and body size". Herpetol. J. Vol 6: 15- 19.
34. Rogers L.E. , Buschbom R.L. , Watson C.R. ( 1977): "Length-weight relationships of shrub-steppe invertebrates". Ann. Entomol. Soc. Am. Vol 70: 51- 53. [Crossref]
35. Rogers L.E. , Hinds W.T. , Buschbom R.L. ( 1976): "A general weight vs length relationship for insects". Ann. Entomol. Soc. Am. Vol 69: 387- 389. [Crossref]
36. Rowe C.L. , Dunson W.A. ( 1995): "Impacts of hydroperiod on growth and survival of larval amphibians in temporary ponds of Central Pennsylvania, USA". Oecologia Vol 102: 397- 403. [Crossref]
37. Rudolf V.H.W. , Singh M. ( 2013): "Disentangling climate change effects on species interactions: Effects of temperature, phenological shifts, and body size". Oecologia Vol 173: 1043- 1052. [Crossref]
38. Ryan T.J. , Semlitsch R.D. ( 2003): "Growth and the expression of alternative life cycles in the salamander Ambystoma talpoideum(Caudata: Ambystomatidae)". Biol. J. Linn. Soc. Vol 80: 639- 646. [Crossref]
39. Sadeh A. ( 2012): "Kin-selective cannibalism and compensatory performance in larval salamander cohorts". Evol. Ecol. Res. Vol 14: 113- 123.
40. Schlüpmann M. , Henf M. , Geiger A. ( 1995): "Kescher für den Amphibienfang". Z. Feldherpetol. Vol 2: 227- 229.
41. Semlitsch R.D. , Wilbur H.M. ( 1988): "Effects of pond drying time on metamorphosis and survival in the salamander Ambystoma talpoideum ". Copeia Vol 4: 978- 983. [Crossref]
42. Steinfartz S. , Weitere M. , Tautz D. ( 2007): "Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest". Mol. Ecol. Vol 16: 4550- 4561. [Crossref]
43. Thiesmeier B. ( 2004): Der Feuersalamander, 1st Edition. Laurenti Verlag, Bielefeld.
44. Thiesmeier B. , Schuhmacher H. ( 1990): "Causes of larval drift of the fire salamander, Salamandra salamandra terrestris, and its effects on population dynamics". Oecologia Vol 82: 259- 263. [Crossref]
45. Trudgill D.L. , Honek A. , Li D. , Van Straalen N.M. ( 2005): "Thermal time – concepts and utility". Ann. Appl. Biol. Vol 146: 1- 14. [Crossref]
46. Weitere M. , Tautz D. , Neumann D. , Steinfartz S. ( 2004): "Adaptive divergence vs environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders". Mol. Ecol. Vol 13: 1665- 1677. [Crossref]
47. Williams D.D. ( 1987): The Ecology of Temporary Waters. Timber Press, Portland. [Crossref]
48. Williams D.D. ( 1996): "Environmental constraints in temporary fresh waters and their consequences for the insect fauna". J. North Am. Benthol. Soc. Vol 15: 634- 650. [Crossref]
49. Winder M. , Schindler D.E. ( 2004): "Climate change uncouples trophic interactions in an aquatic ecosystem". Ecology Vol 85: 2100- 2106. [Crossref]
50. Yang L.H. , Rudolf V.H.W. ( 2010): "Phenology, ontogeny and the effects of climate change on the timing of species interactions". Ecol. Lett. Vol 13: 1- 10. [Crossref]
51. Youngs W.D. , Robson D.D. ( 1978): "Estimation of population number and mortality". In: Methods for the Assessment of Fish Production in Fresh Waters. Bagenal T. , Ed., Blackwell Scientific Publications Ltd, Oxford, UK.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation