Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Differences in chytridiomycosis infection costs between two amphibian species from Central Europe

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Amphibia-Reptilia

Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis associated with amphibian declines. Response and costs of infection varies greatly between species. Bd can induce a stress response in amphibians resulting in elevated corticosterone (CORT). We exposed Bombina variegata and Hyla arborea tadpoles to Bd+ or Bd- Salamandra salamandra larvae and measured CORT release rates, Bd infection loads, and survival through metamorphosis. Tadpoles of both species exposed to Bd+ larvae had elevated CORT release rates compared to tadpoles exposed to Bd- larvae. Bombina variegata appear less resistant to infection than H. arborea, showing higher Bd loads and more infected individuals. Within species, we did not find differences in cost of infection on survival, however more B. variegata tadpoles reached metamorphosis than H. arborea. The differences in resistance may be species specific, owing to higher immunity defenses with H. arborea having higher overall CORT release rates, and differences in antimicrobial peptides, or to differences in Bd strain or other unexplored mechanisms.

Affiliations: 1: 1Texas State University, 601 University Drive, San Marcos, Texas, 78666, USA ; 2: 2Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Baross u. 13., Hungary ; 3: 3Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain ; 4: 4Centro de Investigación, Seguimiento y Evaluación, Parque Nacional de la Sierra de Guadarrama, Cta. M-604, km 27.6, 28740 Rascafría, Spain

*Corresponding author; e-mail: gabor@txstate.edu
Loading

Full text loading...

/content/journals/10.1163/15685381-00003099
Loading

Data & Media loading...

1. Baláž V., Vörös J., Civiš P., Vojar J., Hettyey A., Sós E., Dankovics R., Jehle R., Christiansen D.G., Clare F. , et al,  (2014): "Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection". Conserv. Biol. Vol 28: 213-223. [Crossref]
2. Berger L., Speare R., Daszak P., Green D., Cunningham A. (1998): "Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America". Proc. Natl. Acad. Sci. U.S.A. Vol 95: 9031. [Crossref]
3. Bielby J., Fisher M., Clare F., Rosa G., Garner T. (2015): "Host species vary in infection probability, sub-lethal effects, and costs of immune response when exposed to an amphibian parasite". Sci. Rep. Vol 5: 10828. [Crossref]
4. Blaustein A., Romansic J., Scheessele E., Han B., Pessier A., Longcore J. (2004): "Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis". Conserv. Biol. Vol 19: 1460-1468. [Crossref]
5. Bosch J., Martínez-Solano I., García-París M. (2001): "Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain". Biol. Cons. Vol 97: 331-337. [Crossref]
6. Bosch J., Martínez-Solano I. (2006): "Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Penalara Natural Park, Spain". Oryx Vol 40: 84. [Crossref]
7. Boyle D., Olsen V., Morgan J., Hyatt A. (2004): "Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay". Dis. Aquat. Org. Vol 60: 141. [Crossref]
8. Busch D.S., Hayward L.S. (2009): "Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables". Biol. Cons. Vol 142: 2844-2853. [Crossref]
9. Cheatsazan H., de Almedia A., Russell A., Bonneaud C. (2013): "Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus". BMC Ecology Vol 13: 27. [Crossref]
10. Dankovics R. (1995): The herpetofauna of őrség. Savaria, a Vas megyei Múzeumok Értesítője 22: 253–258. [In Hungarian].
11. Daszak P., Strieby A., Cunningham A.A., Longcore J., Brown C., Porter D. (2004): "Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians". Herpetol. J. Vol 14: 201-207.
12. Dhabhar F. (2009): "A hassle a day may keep the pathogens away: the fight-or-flight stress response and the augmentation of immune function". Integ. Comp. Biol. Vol 49: 215-236. [Crossref]
13. Dhabhar F., McEwen B. (1997): "Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking". Brain Behav. Immun. Vol 11 (4): 286-306. [Crossref]
14. Ellis T., James J., Stewart C., Scott A. (2004): "A noninvasive stress assay based upon measurement of free cortisol released into the water by rainbow trout". J. Fish Biol. Vol 65: 1233-1252. [Crossref]
15. Gabor C., Fisher M., Bosch J. (2013): "A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels". PLoS One Vol 8 (2). [Crossref]
16. Gabor C., Fisher M., Bosch J. (2015): "Elevated corticosterone levels and changes in amphibian behavior are associated with Batrachochytrium dendrobatidis (Bd) infection and Bd lineage". PLoS One Vol 10 (4). [Crossref]
17. Gabor C., Zabierek K., Kim D., Alberici da Barbiano L., Mondelli M., Bendik N., Davis D. (2016): "A non-invasive water-borne assay of stress hormones in aquatic salamanders". Copeia Vol 2016: 172-181. [Crossref]
18. Garner T., Walker S., Bosch J., Leech S., Rowcliffe M., Cunningham A., Fisher M. (2009): "Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis". Oikos Vol 118: 783-791. [Crossref]
19. Gosner K. (1960): "A simplified table for staging anuran embryos and larvae with notes on identification". Herpetologica Vol 16: 183-190.
20. Harris R., James T., Lauer A., Simon M., Patel A. (2006): "Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species". EcoHealth Vol 3: 53-56. [Crossref]
21. Hegyessy G. (2006): "Amphibia – Kétéltűek". In: Notes on the Vertebrate Fauna of North-Eastern Hungary I. – Lampreys (Petromyzontiformes), Fishes (Pisces), Amphibians (Amphibia) and Reptiles (Reptilia). Annales Musei Miskolciensis de Herman Ottó Nominati, 45, p.  507-516. Veres L., Viga G., Eds. [In Hungarian with English summary].
22. Kilpatrick M., Briggs C., Daszak P. (2010): "The ecology and impact of chytridiomycosis: an emerging disease of amphibians". Trends Ecol. Evol. Vol 25: 109-118. [Crossref]
23. Kindermann C., Narayan E.J., Hero J.-M. (2012): "Urinary corticosterone metabolites and chytridiomycosis disease prevalence in a free-living population of male Stony Creek frogs (Litoria wilcoxii)". Comparative biochemistry and physiology, Part A, Molec. Integrat. Physiol. Vol 162: 171-176. [Crossref]
24. Lips K. (2016): "Overview of chytrid emergence and impacts on amphibians". Philos. T. Roy. Soc. B. Vol 371: 20150465. [Crossref]
25. Maher J., Werner E.E., Denver R.J. (2013): "Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles". Proc. R. Soc. B Vol 280: 20123075.
26. Medina D., Garner T.W., Carrascal L.M., Bosch J. (2015): "Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence". Dis. Aquat. Org. Vol 117: 85-92. [Crossref]
27. Pask J.D., Woodhams D.C., Rollins-Smith L.A. (2012): "The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis". Glob. Change Biol. Vol 18: 1231-1238. [Crossref]
28. Peterson J.D., Steffen J.E., Reinert L.K., Cobine P.A., Appel A., Rollins-Smith L., Mendonca M.T. (2013): "Host stress response is important for the pathogenesis of the deadly amphibian disease, chytridiomycosis, in Litoria caerulea". PLoS One Vol 8.
29. Piotrowski J., Annis S., Longcore J. (2004): "Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians". Mycologia Vol 96: 9-15. [Crossref]
30. Rödder D., Kielgast J., Bielby J., Schmidtlein S., Bosch J., Garner T., Veith M., Walker S., Fisher M., Lötters S. (2009): "Global amphibian extinction risk assessment for the panzootic chytrid fungus". Diversity Vol 2009: 52-65. [Crossref]
31. Rollins-Smith L., Ramsey J., Pask J., Reinert L., Woodhams D. (2011): "Amphibian immune defenses against chytridiomycosis: impacts of changing environments". Integ. Comp. Biol. Vol 51: 552-562. [Crossref]
32. Savage A., Terrell K., Gratwicke B., Mattheus N., Augustine L., Fleischer R. (2016): "Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen". Conserv. Physiol. Vol 4 (1). DOI:. [Crossref]
33. Schmidt B., Feldmann R., Schaub M. (2005): "Demographic processes underlying population growth and decline in Salamandra salamandra". Conserv. Biol. Vol 19: 1149-1156. [Crossref]
34. Searle C.L., Belden L.K., Du P., Blaustein A.R. (2014): "Stress and chytridiomycosis: exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen". J. Exper. Zool. Part A, Ecol. Genet. Physiol. Vol 321: 243-253. [Crossref]
35. Searle C.L., Gervasi S.S., Hua J., Hammond J.I., Relyea R.A., Olson D.H., Blaustein A.R. (2011): "Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen". Conserv. Biol. Vol 25: 965-974. [Crossref]
36. Sheriff M.J., Dantzer B., Delehanty B., Palme R., Boonstra R. (2011): "Measuring stress in wildlife: techniques for quantifying glucocorticoids". Oecologia Vol 166: 869-887. [Crossref]
37. Solti B., Varga A. (1981): "A Mátra-hegység kétéltű faunája (Herpetofauna of the Mátra Mts.)". Folia Historico-Naturalia Musei Matraensis Vol 7: 81-101. [In Hungarian].
38. Spitezen-Van Der Sluijs A., Martel A., Hallmann C., Bosman W., Garner T., Van Rooij P., Joris R., Haesebrouck F., Pasmans F. (2014): "Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks". Conserv. Biol. Vol 28: 1302-1311. [Crossref]
39. Stuart S., Chanson J., Cox N., Young B., Rodrigues A., Fischman D., Waller R. (2004): "Status and trends of amphibian declines and extinctions worldwide". Science Vol 306: 1783-1786. [Crossref]
40. Sztatecsny M., Glaser F. (2011): "From the eastern lowlands to the western mountains: first records of the chytrid fungus Batrachochytrium dendrobatidis in wild amphibian populations from Austria". Herpetol. J. Vol 21: 87-90.
41. Tobler U., Schmidt B. (2010): "Within- and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans". PLoS One Vol 5 (6). [Crossref]
42. Voyles J., Young S., Berger L., Campbell C., Voyles W.F., Dinudom A., Cook D., Webb R., Alford R.A., Skerratt L.F., Speare R. (2009): "Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines". Science Vol 326: 582-585. [Crossref]
43. Warne R., Crespi E., Brunner J. (2011): "Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles". Funct. Ecol. Vol 25: 139-146. [Crossref]
44. Woodhams D., Ardipradja K., Alford R., Marantelli G., Reinert L., Rollins-Smith L. (2007): "Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses". Anim. Conserv. Vol 10: 409-417. [Crossref]
45. Woodhams D., Bosch J., Briggs C., Cashins S., Davis L., Lauer A., Muths E., Puschendorf R., Schmidt B., Sheafor B., Voyles J. (2011): "Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis". Front. Zoo. Vol 8: 8. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/15685381-00003099
Loading

Article metrics loading...

/content/journals/10.1163/15685381-00003099
2017-05-30
2017-12-11

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation