Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Clutch size influences embryonic stages at oviposition in a lizard with prolonged egg retention

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Amphibia-Reptilia

We examined the possible interaction between reproductive effort and embryonic stages at oviposition in oviparous form of the lizard Zootoca vivipara. Our results reveal that the percentage of total embryonic development time (%TEDT) reached at oviposition is negatively correlated to clutch size (adjusted to maternal body size). We found no influence of reproductive burden of female (relative clutch mass, RCM) on %TEDT. The significant effect of fecundity supports the hypothesis that a resource limitation such as oxygen may exist for developing embryos in oviducts. The absence of RCM effect suggests that the available space (abdominal burdening of the mother) does not limit the embryonic stages at oviposition.

Affiliations: 1: 1Station Biologique de Paimpont, UMR 6553 CNRS, F-35380, Paimpont, France ; 2: 2Centre d’étude biologique de Chizé CNRS, F-79360, Villiers en Bois, France ; 3: 3School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA

*Corresponding author; e-mail:

Full text loading...


Data & Media loading...

1. Andrews R.M. (1997): "Evolution of viviparity: variation between two sceloporine lizards in the ability to extend egg retention". J. Zool. (London) Vol 243: 579-595. [Crossref]
2. Andrews R.M. (2002): "Low oxygen: a constraint on the evolution of viviparity in reptiles". Physiol. Biochem. Zool. Vol 75: 145-154. [Crossref]
3. Andrews R.M. (2004): "Patterns of embryonic development". In: Reptilian Incubation: Environment, Evolution and Behaviour, p.  75-102. Deeming D.C., Ed., Nottingham University Press, Nottingham, UK.
4. Andrews R.M., Mathies T. (2000): "Natural history of reptilian development: constraints on the evolution of viviparity". Bioscience Vol 50: 227-238. [Crossref]
5. Birchard F., Walsh T., Rosscoe R., Reiber C. (1995): "Oxygen uptake by Komodo dragon (Varanus komodoensis) eggs: the energetic of prolonged development in a reptile". Physiol. Zool. Vol 68: 622-633. [Crossref]
6. Calderon-Espinosa M.L., Andrews R.M., De la Cruz F.R.M. (2006): "Evolution of egg retention in the Sceloporus spinosus group: exploring the role of physiological, environmental, and phylogenetic factors". Herpetol. Monogr. Vol 20: 147-158. [Crossref]
7. Cicchetti D.V. (1994): "Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology". Psychological Assessment Vol 6: 284-290. [Crossref]
8. Clark H. (1953): "Metabolism of the black snake embryo, II. Respiratory exchange". J. Exp. Biol. Vol 30: 502-505.
9. Demarco V. (1993): "Estimating egg retention times in sceloporine lizards". J. Herpetol. Vol 27: 453-458. [Crossref]
10. Dufaure J.P., Hubert J. (1961): "Table de développement du lézard vivipare: Lacerta vivipara". Arch. Anat. Microsc. Morphol. Exp. 309-328.
11. Foucart T., Lourdais O., Denardo D.F., Heulin B. (2014): "Influence of reproductive mode on metabolic costs of reproduction: insight from the bimodal lizard Zootoca vivipara". J. Exp. Biol. Vol 33: 4049-4056. [Crossref]
12. Heulin B., Ghielmi S., Vogrin N., Surget-Groba Y., Guillaume C.P. (2002): "Variation in eggshell characteristics and in intrauterine egg retention between two oviparous clades of the lizard Lacerta vivipara: insight into the oviparity-viviparity continuum in squamates". J. Morphol. Vol 252: 255-262. [Crossref]
13. Kam Y.-C. (1993): "Physiological effects of hypoxia on metabolism and growth of turtle embryos". Respir. Physiol. Vol 92: 127-138. [Crossref]
14. Kenward M.G., Roger J.H. (1997): "Small sample inference for fixed effects from restricted maximum likelihood". Biometrics Vol 53: 983-997. [Crossref]
15. Le Galliard J.-F., Le Bris M., Clobert J. (2003): "Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard". Funct. Ecol. Vol 17: 877-885. [Crossref]
16. LeBreton J.M., Senter J.L. (2008): "Answers to 20 questions about interrater reliability and interrater agreement". Organizational Research Methods Vol 11: 815-852. [Crossref]
17. Liang L., Sun B.-J., Ma L., Du W.-G. (2015): "Oxygen-dependent heat tolerance and developmental plasticity in turtle embryos". J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. Vol 185: 257-263. [Crossref]
18. Lindstrom J. (1999): "Early development and fitness in birds and mammals". Trends Ecol. Evol. Vol 14: 343-348. [Crossref]
19. Lorioux S., DeNardo D.F., Gorelick R., Lourdais O. (2012): "Maternal influences on early development: preferred temperature prior to oviposition hastens embryogenesis and enhances offspring traits in the Children’s python, Antaresia childreni". J. Exp. Biol. Vol 215: 1346-1353. [Crossref]
20. Lourdais O., Heulin B., Denardo D.F. (2008): "Thermoregulation during gravidity in the children’s python (Antaresia childreni): a test of the preadaptation hypothesis for maternal thermophily in snakes". Biol. J. Linn. Soc. Vol 93: 499-508. [Crossref]
21. Lourdais O., Lorioux S., Dupoué A., Wright C., DeNardo D.F. (2015): "Embryonic water uptake during pregnancy is stage- and fecundity-dependent in the snake Vipera aspis". Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. Vol 189: 102-106. [Crossref]
22. Mathies T., Andrews R.M. (1996): "Extended egg retention and its influence on embryonic development and egg water balance: implications for the evolution of viviparity". Physiol. Zool. Vol 69: 1021-1035. [Crossref]
23. Mills N.E., Barnhart M.C. (1999): "Effects of hypoxia on embryonic development in two Ambystoma and two Rana species". Physiol. Biochem. Zool. Vol 72: 179-188. [Crossref]
24. Parker S.L., Andrews R.M., Mathies T. (2004): "Embryonic responses to variation in oviductal oxygen in the lizard Sceloporus undulatus from New Jersey and South Carolina, USA". Biol. J. Linn. Soc. Vol 83: 289-299. [Crossref]
25. Rafferty A.R., Evans R.G., Scheelings T.F., Reina R. (2013): "Limited oxygen availability in utero may constrain the evolution of live birth in reptiles". Am. Nat. Vol 181: 245-253. [Crossref]
26. Rodriguez-Diaz T., Brana F. (2011): "Plasticity and limitations of extended egg retention in oviparous Zootoca vivipara (Reptilia: Lacertidae)". Biol. J. Linn. Soc. Vol 102: 75-82. [Crossref]
27. Rodriguez-Diaz T., Brana F. (2012): "Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity". J. Evol. Biol. Vol 25: 1877-1887. [Crossref]
28. Shine R. (1983): "Reptilian reproductive modes – the oviparity-viviparity continuum". Herpetologica Vol 39: 1-8.
29. Shine R. (1995): "A new hypothesis for the evolution of viviparity in reptiles". Am. Nat. Vol 145: 809-823. [Crossref]
30. Shine R. (2003): "Effects of pregnancy on locomotor performance: an experimental study on lizards". Oecologia. Vol 136: 450-456. [Crossref]
31. Shine R. (2004): "Adaptive consequences of developmental plasticity". In: Reptilian Incubation: Environment, Evolution and Behaviour, p.  187-210.
32. Stahlschmidt Z.R., Denardo D.F. (2009): "Obligate costs of parental care to offspring: egg brooding-induced hypoxia creates smaller, slower and weaker python offspring". Biol. J. Linn. Soc. Vol 98: 414-421. [Crossref]
33. Tate K.B., Kohl Z.F., Eme J., Rhen T., Crossley D.A. II (2015): "Critical windows of cardiovascular susceptibility to developmental hypoxia in common snapping turtle (Chelydra serpentina) embryos". Physiol. Biochem. Zool. Vol 88: 103-115. [Crossref]
34. Thompson M.B. (1989): "Patterns of metabolism in embryonic reptiles". Respir. Physiol. Vol 76: 243-256. [Crossref]
35. Vleck C., Hoyt D. (1991): "Metabolism and energetics of reptilian and avian embryos". In: Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, p.  285-306. Deeming D.C., Ferguson M.W.J., Eds, Cambridge University Press, Cambridge. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation