Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Feeding limitations in temperate anurans and the niche variation hypothesis

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Amphibia-Reptilia

The niche variation hypothesis (NVH) states that populations with wider niches are more phenotypically variable. The NVH has important ecological and evolutionary implications but has been controversial since its inception. Recent interpretations have supported the NVH by directly comparing among-individual diet variation with population dietary niche breadth. Traditional studies of the NVH focused on morphological traits as proxies of niche variation, with contradictory results. Gape-limited predators may be relatively likely to show effects of morphological variation on diet breadth because gape size can strongly limit diet. We used five anurans to test NVH predictions, including three true frogs, Rana catesbeiana, R. clamitans, and R. sphenocephala, and two toads, Anaxyrus americanus and A. fowleri. We combined recent and traditional approaches by comparing both individual variation in diet and variation in gape width with dietary niche breadth. We found support for the NVH within two species of the three true frogs but not for either toad species, a difference likely driven by greater strength of the feeding limitation caused by gape width in the frogs. Toads had higher gape width to snout-vent length ratios, reducing the strength of the feeding limitation imposed by gape width. We found strong support for the NVH among species; species with more among-individual variation in diet and species with more variation in gape width had broader niches. Our results highlight the circumstances under which the NVH is applicable and demonstrate an example in which the NVH is supported through both traditional and recent interpretations.

Affiliations: 1: 1National Great Rivers Research and Education Center, East Alton, IL 62024, USA ; 2: 2Washington University in St. Louis, Department of Biology, St. Louis, MO 63105, USA ; 3: 3University of Louisville, Department of Biology, Louisville, KY 40292, USA

*Corresponding author; e-mail: ccloyed@lc.edu
Loading data from figshare Loading data from figshare
Loading

Full text loading...

/content/journals/10.1163/15685381-00003131
Loading

Data & Media loading...

1. Benard M.F., Maher J.M. (2011): "Consequences of intraspecific niche variation: phenotypic similarity increases competition among recently metamorphosed frogs". Oecologia Vol 166: 585-592. [Crossref]
2. Bolnick D.I., Amarasekare P., Araújo M.S., Bürger R., Levine J.M., Novak M., Rudolf V.H.W., Schreiber S.J., Urban M.C., Vasseur D.A. (2011): "Why intraspecific trait variation matters in ecology". Trends Ecol. Evol. Vol 26: 183-192. [Crossref]
3. Bolnick D.I., Svanbäck R., Araújo M.S., Persson L. (2007): "Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous". Proc. Natl. Acad. Sci. USA Vol 104: 10075-10079. [Crossref]
4. Bolnick D.I., Svanbäck R., Fordyce J.A., Yang L.H., Davis J.M., Hulsey C.D., Forister M.L. (2003): "The ecology of individuals: incidence and implications of individual specialization". Am. Nat. Vol 161: 1-28. [Crossref]
5. Bolnick D.I., Yang L.H., Fordyce J.A., Davis J.M., Svanbäck R. (2002): "Measuring individual-level resource specialization". Ecology Vol 83: 2936-2941. [Crossref]
6. Chamberlain C.P., Waldbauer J.R., Fox-Dobbs K., Newsome S.D., Koch P.L., Smith D.R., Church M.E., Chamberlain S.D., Sorenson K.J., Risebrough R. (2005): "Pleistocene to recent dietary shifts in California condors". Proc. Natl. Acad. Sci. USA Vol 102: 16707-16711. [Crossref]
7. Cloyed C.S., Eason P.K. (2016): "Different ecological conditions support individual specialization in closely related, ecologically similar species". Evol. Ecol. Vol 30: 379-400. [Crossref]
8. Cloyed C.S., Eason P.K. (2017): "Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans". R. Soc. Open Sci. Vol 4: 170060.
9. Cloyed C.S., Newsome S.D., Eason P.K. (2015): "Trophic discrimination factors and isotopic incorporation rates of carbon and nitrogen stable isotopes in green frogs, Lithobates clamitans". Physiol. Biochem. Zool. Vol 88: 576-585. [Crossref]
10. Costa G.C., Mesquita D.O., Colli G.R., Vitt L.J. (2008): "Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages?" Am. Nat. Vol 172: 868-877. [Crossref]
11. Dayan T., Simberloff D. (1994): "Character displacement, sexual dimorphism, and morphological variation among British and Irish mustelids". Ecology Vol 75: 1063-1073. [Crossref]
12. Dennison M.D., Baker A.J. (1991): "Morphometric variability in continental and Atlantic island populations of chaffinches (Fringilla coelebs)". Evolution Vol 45: 29-39.
13. Dial K.P., Greene E., Irschick D.J. (2008): "Allometry of behaviour". Trends Ecol. Evol. Vol 23: 394-401. [Crossref]
14. Díaz M. (1994): "Variability in seed size selection by granivorous passerines: effects of bird size, bird size variability, and ecological plasticity". Oecologia Vol 99: 1-6. [Crossref]
15. Flowers M.A., Graves B.M. (1995): "Prey selectivity and size-specific diet changes in Bufo cognatus and B. woodhousii during early postmetamorphic ontogeny". J. Herpetol. Vol 29: 608-612. [Crossref]
16. Hsu Y., Shaner P., Chang C., Ke L., Kao S. (2014): "Trophic niche width increases with bill-size variation in a generalist passerine: a test of niche variation hypothesis". J. Anim. Ecol. Vol 83: 450-459. [Crossref]
17. Iriarte-Díaz J. (2002): "Differential scaling of locomotor performance in large and small terrestrial mammals". J. Exp. Biol. Vol 205: 2897-2908.
18. Jackson A.L., Inger R., Parnell A.C., Bearhop S. (2011): "Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R". J. Anim. Ecol. Vol 80: 595-602. [Crossref]
19. Lasky J.R., Yang J., Zhang G., Cao M., Tang Y., Keitt T.H. (2014): "The role of functional traits and individual variation in the co-occurrence of Ficus species". Ecology Vol 95: 978-990. [Crossref]
20. Layman C.A., Arrington D.A., Montaña C.G., Post D.M. (2007): "Can stable isotope ratios provide for community-wide measures of trophic structure?" Ecology Vol 88: 42-48. [Crossref]
21. Lima A.P. (1998): "The effects of size on the diets of six sympatric species of postmetamorphic litter anurans in central Amazonia". J. Herpetol. Vol 32: 392-399. [Crossref]
22. Marden J.H. (1994): "From damselflies to pterosaurs: how burst and sustainable flight performance scale with size". Am. J. Physiol. Vol 205: 2153-2160.
23. Meiri S., Dayan T., Simberloff D. (2005): "Variability and sexual size dimorphism in carnivores: testing the niche variation hypothesis". Ecology Vol 86: 1432-1440. [Crossref]
24. Nosil P. (2012): Ecological Speciation. Oxford University Press, Oxford. [Crossref]
25. Ortíz-Serrato L., Ruiz-Campos G., Valdez-Villavicencio J.H. (2014): "Diet of the exotic American bullfrog, Lithobates catesbeianus, in a stream of northwestern Baja California, Mexico". West. N. Am. Naturalist Vol 74: 116-122. [Crossref]
26. Patterson B.D. (1983): "Grasshopper mandibles and the niche variation hypothesis". Evolution Vol 37: 375-388. [Crossref]
27. Pipen P., Penney R.W. (1997): "Patterns of prey size and taxonomic composition in larval fish: are there general size-dependent models?" J. Fish Biol. Vol 51: 84-100. [Crossref]
28. R Core Development Team (2015): R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
29. Roughgarden J. (1972): "Evolution of niche width". Am. Nat. Vol 106: 683-718. [Crossref]
30. Salvidio S., Oneto F., Ottonello D., Costa A., Romano A. (2015): "Trophic specialization at the individual level in a terrestrial generalist salamander". Can. J. Zool. Vol 93: 79-83. [Crossref]
31. Scharf F.S., Juanes F., Rountree R.A. (2000): "Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth". Mar. Ecol. Prog. Ser. Vol 208: 229-248. [Crossref]
32. Schindler D.E., Hilborn R., Chasco B., Boatright C.P., Quinn T.P., Rogers L.A., Webster M.S. (2010): "Population diversity and the portfolio effect in an exploited species". Nature Vol 465: 609-612. [Crossref]
33. Schluter D. (2000): The Ecology of Adaptive Radiations. Oxford University Press, Oxford.
34. Shine R. (1991): "Intersexual dietary divergence and the evolution of sexual dimorphism in snakes". Am. Nat. Vol 138: 103-122. [Crossref]
35. Solé M., Beckmann O., Pelz B., Engels W. (2005): "Stomach-flushing for diet analysis in anurans: an improved protocol evaluated in a case study in Araucaria forests, southern Brazil". Stud. Neotrop. Fauna. Environ. Vol 40: 23-28. [Crossref]
36. Soulé M., Stewart B.R. (1970): "The “niche-variation” hypothesis: a test and alternatives". Am. Nat. Vol 104: 85-97. [Crossref]
37. Svanbäck R., Bolnick D.I. (2007): "Intraspecific competition drives increased resource use diversity within a natural population". Proc. R. Soc. Lond. B Vol 274: 839-844. [Crossref]
38. Svanbäck R., Schluter D. (2012): "Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback". Am. Nat. Vol 180: 50-59. [Crossref]
39. Taper M.L., Chase T.J. (1985): "Quantitative genetic models for the coevolution of character displacement". Ecology Vol 66: 355-371. [Crossref]
40. Taylor C.R., Caldwell S.L., Rowntree V.J. (1972): "Running up and down hills: some consequences of size". Science Vol 178: 1096-1097. [Crossref]
41. Tinker T.M., Bentall G., Estes J.A. (2008): "Food limitation leads to behavioural diversification and dietary specialization in sea otters". Proc. Natl. Acad. Sci. USA Vol 105: 560-565. [Crossref]
42. Van Valen L.M. (1965): "Morphological variation and width of ecological niche". Am. Nat. Vol 99: 377-390. [Crossref]
43. Vincent S.E., Vincent P.D., Irschick D.J., Rossell J.M. (2006): "Do juvenile gape-limited predators compensate for their small size when feeding?" J. Zool. Vol 268: 279-284. [Crossref]
44. Werner T.K., Sherry T.W. (1987): "Behavioural feeding specialization in Pinaroloxias inornata, the “Darwin’s finch” of Cocos Island, Costa Rica". Proc. Natl. Acad. Sci. USA Vol 84: 5506-5510. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/15685381-00003131
Loading

Article metrics loading...

/content/journals/10.1163/15685381-00003131
2017-11-27
2018-09-26

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation