Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Trophic niche overlap in two syntopic colubrid snakes (Hierophis viridiflavus and Zamenis longissimus) with contrasted lifestyles

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Amphibia-Reptilia

In many organisms, including snakes, trophic niche partitioning is an important mechanism promoting species coexistence. In ectotherms, feeding strategies are also influenced by lifestyle and thermoregulatory requirements: active foragers tend to maintain high body temperatures, expend more energy, and thus necessitate higher energy income. We studied diet composition and trophic niche overlap in two south European snakes (Hierophis viridiflavus and Zamenis longissimus) in the northern part of their range. The two species exhibit contrasted thermal adaptations, one being highly mobile and thermophilic (H. viridiflavus) and the other being elusive with low thermal needs (Z. longissimus). We analyzed feeding rate (proportion of snakes with indication of a recent meal) and examined more than 300 food items (fecal pellets and stomach contents) in 147 Z. longissimus and 167 H. viridiflavus. There was noticeable overlap in diet (overlap of Z. longissimus on H. viridiflavus = 0.62; overlap of H. viridiflavus on Z. longissimus = 0.80), but the similarity analyses showed some divergence in diet composition. Dietary spectrum was wider in H. viridiflavus, which fed on various mammals, birds, reptiles, and arthropods whereas Z. longissimus was more specialized on mammals and birds. The more generalist nature of H. viridiflavus was consistent with its higher energy requirements. In contrast to our expectation, feeding rate was apparently higher in Z. longissimus than in H. viridiflavus, but this could be an artifact of a longer transit time in Z. longissimus, given its lower mean body temperature. These results allow a better understanding of the ability to coexist in snakes belonging to temperate climate colubrid communities.

Affiliations: 1: 2Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers, France ; 2: 1Centre d’Études Biologiques de Chizé, CNRS, 79360 Villiers en Bois, France ; 3: 3Département de biologie, Université Laval, Québec, G1V 0A6 Canada ; 4: 4Département de biologie, Université d’Ottawa, Ottawa, Ontario, K1N 6N5 Canada

*Corresponding author; e-mail:

Full text loading...


Data & Media loading...

1. Aubret F., Burghardt G., Maumelat S., Bonnet X., Bradshaw S.D. (2006): "Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae)". Behav. Ecol. Vol 17: 716- 725. [Crossref]
2. Blouin-Demers G., Weatherhead P.J. (2002): "Habitat-specific behavioural thermoregulation by black rat snakes (Elaphe obsoleta obsoleta)". Oikos Vol 97: 59- 68. [Crossref]
3. Bonnet X., Naulleau G. (1996): "Are body reserves important for reproduction in male dark green snakes (Colubridae: Coluber viridiflavus)?" Herpetologica Vol 52: 137- 146.
4. Bonnet X., Naulleau G., Shine R. (1999): "The dangers of leaving home: dispersal and mortality in snakes". Biol. Conserv. Vol 89: 39- 50. [Crossref]
5. Bonnet X., Lorioux S., Pearson D., Aubret F., Bradshaw D., Delmas V., Fauvel T. (2011): "Which proximate factor determines sexual size dimorphism in tiger snakes?" Biol. J. Linn. Soc. Vol 103: 668- 680. [Crossref]
6. Brischoux F., Bonnet X., Shine R. (2009): "Determinants of dietary specialization: a comparison of two sympatric species of sea snakes". Oikos Vol 118: 145- 151. [Crossref]
7. Burbrink F.T., Lawson R. (2007): "How and when did Old World ratsnakes disperse into the New World?" Mol. Phylogenet. Evol. Vol 43: 173- 189. [Crossref]
8. Capizzi D., Luiselli L. (1996): "Feeding relationships and competitive interactions between phylogenetically unrelated predators (owls and snakes)". Acta Oecol. Vol 17: 265- 284.
9. Capizzi D., Luiselli L., Capula M., Rugiero L. (1995): "Feeding habits of a Mediterranean community of snakes in relation to prey availability". Rev. Ecol. (Terre et Vie) Vol 50: 353- 363.
10. Capizzi D., Capula M., Rugiero L., Luiselli L. (2008): "Dietary patterns of two sympatric Mediterranean snakes (Hierophis viridiflavus and Zamenis longissimus) along a gradient of habitat alteration". Herpetol. J. Vol 18: 141- 146.
11. Chapman M.G., Underwood A.J. (1999): "Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests". Mar. Ecol. Prog. Ser. Vol 180: 257- 265. [Crossref]
12. Clarke K.R. (1993): "Non-parametric multivariate analysis of changes in community structure". Aust. J. Ecol. Vol 18: 117- 143. [Crossref]
13. Cundall D., Greene H.W. (2000): "Feeding in snakes". In: Feeding: Form, Function and Evolution in Tetrapod Vertebrates, p.  293- 333, Schwenk K., Ed., Academic Press, San Diego.
14. Debrot S., Fivaz G., Mermod C., Weber J.M. (1982): Atlas des Poils de Mammifères d’Europe. Institut de Zoologie de l’Université de Neuchâtel, Neuchâtel.
15. Erome G., Aulagnier S. (1982): "Contribution à l’identification des proies des rapaces". Bièvre Vol 4: 129- 135.
16. Filippi E., Luiselli L. (2006): "Changes in community composition, habitats and abundance of snakes over 10+ years in a protected area in Italy: conservation implications". Herpetol. J. Vol 16: 29- 36.
17. Greene H.W. (2001): Snakes: The Evolution of Mystery in Nature. California University Press.
18. Halstead B.J., Mushinsky H.R., McCoy E.D. (2008): "Sympatric Masticophis flagellum and Coluber constrictor select vertebrate prey at different levels of Taxonomy". Copeia Vol 2008: 897- 908. [Crossref]
19. Huey R.B. (1982): "Temperature, physiology and the ecology of reptiles". In: Biology of the Reptilia, p. 25- 91. Pough F.H., Gans C. (Eds), Academic Press, New York.
20. Krebs C.J. (1999): Ecological Methodology. Addison Wesley Longman, Inc.
21. Lelièvre H., Le Hénanff M., Blouin-Demers G., Naulleau G., Lourdais O. (2010a): "Thermal strategies and energetics in two sympatric colubrid snakes with contrasted exposure". J. Comp. Physiol. B Vol 180: 415- 425. [Crossref]
22. Lelièvre H., Blouin-Demers G., Bonnet X., Lourdais O. (2010b): "Thermal benefits of artificial shelters in snakes: a radiotelemetric study of two sympatric colubrids". J. Therm. Biol. Vol 35: 324- 331. [Crossref]
23. Lelièvre H., Blouin-Demers G., Pinaud D., Lisse H., Bonnet X., Lourdais O. (2011): "Contrasted thermal preferences translate into divergences in habitat use and realized performance in two sympatric snakes". J. Zool. Vol 284: 265- 275. [Crossref]
24. Lourdais O., Bonnet X., Shine R., DeNardo D., Naulleau G., Guillon M. (2002): "Capital-breeding and reproductive effort in a variable environment: a longitudinal study of a viviparous snake". J. Anim. Ecol. Vol 71: 470- 479. [Crossref]
25. Luiselli L. (2003): "Do snakes exhibit shifts in feeding ecology associated with the presence or absence of potential competitors? A case study from tropical Africa". Can. J. Zool. Vol 81: 228- 236. [Crossref]
26. Luiselli L. (2006a): "Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns". Oikos Vol 114: 193- 211. [Crossref]
27. Luiselli L. (2006b): "Ecological modelling of convergence patterns between European and African ‘whip’ snakes". Acta Oecol. Vol 30: 62- 68. [Crossref]
28. MacArthur R.H., Levins R. (1967): "The limiting similarity, convergence, and divergence of coexisting species". Am. Nat. Vol 101: 377- 385. [Crossref]
29. Mori A., Vincent S.E. (2008): "An integrative approach to specialization: relationships among feeding morphology, mechanics, behaviour, performance and diet in two syntopic snakes". J. Zool. Vol 275: 47- 56. [Crossref]
30. Naulleau G. (1984): "Les serpents de France". Revue Française d’Aquariologie Vol 11: 1- 56.
31. Oksanen J., Guillaume Blanchet F., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. (2010). Vegan: community ecology package. Available at
32. R Development Core Team (2007): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
33. Rodriguez-Robles J.A. (2002): "Feeding ecology of North American gopher snakes (Pituophis catenifer, Colubridae)". Biol. J. Linn. Soc. Vol 77: 165- 183. [Crossref]
34. Rugiero L., Capizzi D., Luiselli L. (2002): "Interactions between sympatric snakes, Coluber viridiflavus and Elaphe longissima: are there significant inter-annual differences in coexistence patterns?" Ecol. Medit. Vol 28: 75- 91.
35. Scali S., Mangiacotti M., Bonardi A. (2008): "Living on the edge: habitat selection of Hierophis viridiflavus". Acta Herpetol. Vol 3: 85- 97.
36. Schmidlin L., Bonnet X., Tege C. (1996): "Coluber viridiflavus (European whip snake)". Cannibalism. Herp. Review Vol 27: 143.
37. Secor S.M., Nagy K.A. (1994): "Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum". Ecology Vol 75: 1600- 1614. [Crossref]
38. Shine R., Bonnet X., Elphick M.J., Barrott E.G. (2004): "A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae)". Funct. Ecol. Vol 18: 16- 24. [Crossref]
39. Stevenson R.D., Peterson C.R., Tsuji J. (1985): "The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake". Physiol. Zool. Vol 58: 46- 57. [Crossref]
40. Tanaka K., Ota H. (2002): "Natural history of two colubrid snakes, Elaphe quadrivirgata and Rhabdophis tigrinus, on Yakushima Island, southwestern Japan". Amphibia-Reptilia Vol 23: 323- 331. [Crossref]
41. Toft C.A. (1985): "Resource partitioning in amphibians and reptiles". Copeia Vol 1985: 1- 21. [Crossref]
42. Vanni S., Lanza B. (1977): "Predation by the European whip Snake Coluber viridiflavus Lacépède, on the asp viper, Vipera aspis (Linnaeus)". Natura Vol 68: 285- 289.
43. Vincent S.E., Moon B.R., Shine R., Herrel A. (2006): "The functional meaning of “prey size” in water snakes (Nerodia fasciata, Colubridae)". Oecologia Vol 147: 204- 211. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Amphibia-Reptilia — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation