Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Do turning biases by the 7-spot ladybird, Coccinella septempunctata, increase their foraging efficiency?

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

The hypothesis that foraging male and female Coccinella septempunctata L. would exhibit a turning bias when walking along a branched linear wire in a Y-maze was tested. Individuals were placed repeatedly in the maze. Approximately 45% of all individuals tested displayed significant turning biases, with a similar number of individuals biased to the left and right. In the maze right-handed individuals turned right at 84.4% of turns and the left-handed individuals turned left at 80.2% of turns. A model of the searching efficiency of C. septempunctata in dichotomous branched environments showed that model coccinellids with greater turning biases discovered a higher proportion of the plant for a given number of searches than those with no bias. A modification of the model to investigate foraging efficiency, by calculating the mean time taken by individuals to find randomly distributed aphid patches, suggested that on four different sizes of plants, with a variety of aphid patch densities, implementing a turning bias was a significantly more efficient foraging strategy than no bias. In general the benefits to foraging of implementing a turning bias increased with the degree of the bias. It may be beneficial for individuals in highly complex branched environments to have a turning bias slightly lower than 100% in order to benefit from increased foraging efficiency without walking in circles. Foraging bias benefits increased with increasing plant size and decreasing aphid density. In comparisons of two different plant morphologies, one with a straight stem and side branches and one with a symmetrically branched morphology, there were few significant differences in the effects of turning biases on foraging efficiency between morphologies.

Affiliations: 1: Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK; 2: School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation