Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Predator-prey space use and the spatial distribution of predation events

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

In many systems, predators and prey interact spatially. A number of game theoretic models (joint ideal free distributions, IFD) have suggested that a population-level distribution of mobile predators and mobile prey in which predators match the distribution of the prey’s resources and prey are more evenly distributed will be stable. However, prey can often manage their exposure to predation risk by adjusting their space use and their level of apprehension or vigilance, while predators have been shown to behaviorally manage the risk level perceived by their prey. We used a system of predatory larval dragonflies (Anax junius) and southern leopard frog (Rana sphenocephala) tadpoles to explore how these species respond spatially to habitat features when alone (non-game situations) and together (game situations), then how predation events are distributed in relation to these features. In game and non-game situations, dragonflies avoided each other and showed no preference for tadpole resource patches, while tadpoles favored their resource patches, avoided caged, feeding dragonflies, and used a combination of avoidance and activity reduction to reduce their predation risk. Predation events were generally distributed closer to resource patches and farther from caged predators. The results suggest that dragonflies and tadpoles do not directly follow joint IFD predictions, but manage fear and risk through their behavioral strategies. The results also suggest that stationary or slowly-changing habitat features can anchor predator-prey spatial distributions, but that they are likely to be temporally variable in some systems.

Affiliations: 1: Department of Zoology, Oklahoma State University, Stillwater, OK 74078-3052, USA

10.1163/156853912X645087
/content/journals/10.1163/156853912x645087
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156853912x645087
Loading

Data & Media loading...

1. Alonzo S.H. ( 2002). "State-dependent habitat selection games between predators and prey: the importance of behavioral interactions and expected lifetime reproductive success". — Evol. Ecol. Res. Vol 4: 759- 778.
2. Bouskila A. ( 2001). "A habitat selection game for interactions between rodents and their predators". — Ann. Zool. Fenn. Vol 38: 55- 70.
3. Brown J.S. , Kotler B.P. ( 2004). "Hazardous duty pay: studying the foraging cost of predation". — Ecol. Lett. Vol 7: 999- 1014. http://dx.doi.org/10.1111/j.1461-0248.2004.00661.x
4. Brown J.S. , Kotler B.P. , Bouskila A. ( 2001). "The ecology of fear and foraging games between owls and rodents". — Ann. Zool. Fenn. Vol 38: 71- 87.
5. Brown J.S. , Laundre J. , Gurung M. ( 1999). "The ecology of fear: optimal foraging, game theory, and trophic interactions". — J. Mammal. Vol 80: 385- 399. http://dx.doi.org/10.2307/1383287
6. Corbet P.S. ( 1999). Dragonflies: behavior and ecology of odonata. — Cornell University Press, Ithaca, NY.
7. Druce D.J. , Brown J.S. , Kerley G.I.H. , Kotler B.P. , Mackey R.L. , Slotow R. ( 2009). "Spatial and temporal scaling in habitat utilization by klipspringers ( Oreotragus oreotragus) determined using giving-up densities". — Austr. Ecol. Vol 34: 577- 587. http://dx.doi.org/10.1111/j.1442-9993.2009.01963.x
8. Dupuch A. , Dill L.M. , Magnan P. ( 2009). "Testing the effects of resource distribution and inherent habitat riskiness on simultaneous habitat selection by predators and prey". — Anim. Behav. Vol 78: 705- 713. http://dx.doi.org/10.1016/j.anbehav.2009.05.033
9. Embar K. , Kotler B.P. , Mukherjee S. ( 2011). "Risk management in optimal foragers: the effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils". — Oikos Vol 120: 1657- 1666. http://dx.doi.org/10.1111/j.1600-0706.2011.19278.x
10. Ferrari M.C.O. , Chivers D.P. ( 2009). "Temporal variability, threat-sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behaviour". — Anim. Behav. Vol 78: 11- 16. http://dx.doi.org/10.1016/j.anbehav.2009.03.016
11. Ferrari M.C.O. , Messier F. , Chivers D.P. ( 2009). "Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs". — Chemoecology Vol 17: 263- 266. http://dx.doi.org/10.1007/s00049-007-0381-0
12. Flaxman S.M. , Lou Y. ( 2009). "Tracking prey or tracking the prey’s resource? Mechanisms of movement and optimal habitat selection by predators". — J. Theor. Biol. Vol 256: 187- 200. http://dx.doi.org/10.1016/j.jtbi.2008.09.024
13. Fraker M.E. ( 2008). "The dynamics of predation risk assessment: responses of anuran larvae to chemical cues of predators". — J. Anim. Ecol. Vol 77: 638- 645. http://dx.doi.org/10.1111/j.1365-2656.2008.01386.x
14. Friesen R.G. , Chivers D.P. ( 2006). "Underwater video reveals strong avoidance of alarm cues by fishes". — Ethology Vol 112: 339- 345. http://dx.doi.org/10.1111/j.1439-0310.2006.01160.x
15. Hammond J.I. , Luttbeg B. , Sih A. ( 2007). "Predator and prey space use: dragonflies and tadpoles in an interactive game". — Ecology Vol 88: 1525- 1535. http://dx.doi.org/10.1890/06-1236
16. Heithaus M.R. , Wirsing A.J. , Burkholder D. , Thomson J. , Dill L.M. ( 2008). "Toward a predictive framework for predator risk effects: the interaction of landscape features and predator risk effects". — J. Anim. Ecol. Vol 78: 556- 562. http://dx.doi.org/10.1111/j.1365-2656.2008.01512.x
17. Hugie D.M. , Dill L.M. ( 1994). "Fish and game: a game theoretic approach to habitat selection by predators and prey". — J. Fish Biol. Vol 45(Suppl. A): 151- 169.
18. Iribarren C. , Kotler B.P. ( in press). "Foraging patterns of habitat use reveal Nubian ibex landscape of fear". — Wildl. Biol.
19. Iwasa Y. ( 1982). "Vertical migration of zooplankton: a game between predator and prey". — Am. Nat. Vol 120: 171- 180. http://dx.doi.org/10.1086/283980
20. Kats L.B. , Dill L.M. ( 1998). "The scent of death: chemosensory assessment of predation risk by prey animals". — Ecoscience Vol 5: 361- 394.
21. Katz M.W. , Abramsky Z. , Kotler B. , Altstein O. , Rosenzweig M.L. ( 2010). "Playing the waiting gane: predator and prey in a test environment". — Evol. Ecol. Res. Vol 12: 793- 801.
22. Kotler B.P. , Brown J. , Dall S. , Gresser S. , Ganey D. , Bouskila A. ( 2002). "Foraging games between gerbils and their predators: temporal dynamics of resource depletion and apprehension". — Evol. Ecol. Res. Vol 4: 495- 518.
23. Kotler B.P. , Brown J.S. , Hasson O. ( 1991). "Factors affecting gerbil foraging behavior and rates of owl predation". — Ecology Vol 72: 2249- 2260. http://dx.doi.org/10.2307/1941575
24. Krause J. , Godin J.-G.J. ( 1995). "Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey". — Behav. Ecol. Vol 7: 264- 271. http://dx.doi.org/10.1093/beheco/7.3.264
25. Krivan V. ( 1997). "Dynamic ideal free distribution: effects of optimal patch choice on predator–prey dynamics". — Am. Nat. Vol 149: 164- 178. http://dx.doi.org/10.1086/285984
26. Laundre J.W. ( 2010). "Behavioral response races, predator–prey shell games, ecology of fear, and patch use of a large predator and its ungulate prey". — Ecology Vol 91: 2995- 3007. http://dx.doi.org/10.1890/08-2345.1
27. Lima S.L. ( 1998). "Stress and decision making under the risk of predation: recent development from behavioral, reproductive, and ecological perspectives". — Adv. Stud. Behav. Vol 27: 215- 290.
28. Lima S.L. ( 2002). "Putting predators back into behavioral predator–prey interactions". — Trends Ecol. Evol. Vol 17: 70- 75. http://dx.doi.org/10.1016/S0169-5347(01)02393-X
29. Lima S.L. , Bednekoff P.A. ( 1999). "Temporal variation in danger drives anti-predator behavior: the predation risk allocation hypothesis". — Am. Nat. Vol 153: 649- 659. http://dx.doi.org/10.1086/303202
30. Lima S.L. , Steury T.D. ( 2005). "Perception of predation risk: the foundation of nonlethal predator–prey interactions". — In: Ecology of predator–prey interactions( Barbosa P. , Castellanos I. , eds). Oxford University Press, London, p.  166- 188.
31. Luttbeg B. , Hammond J.I. , Sih A. ( 2009). "Dragonfly larvae and tadpole frog space use games in varied light conditions". — Behav. Ecol. Vol 20: 13- 21. http://dx.doi.org/10.1093/beheco/arn107
32. Luttbeg B. , Sih A. ( 2004). "Predator and prey habitat selection games: the effects of how prey balance foraging and predation risk". — Isr. J. Zool. Vol 50: 233- 254. http://dx.doi.org/10.1560/L6QV-UA5T-RDR7-L7QG
33. McDiarmid R.W. , Altig R. ( 2000). Tadpoles: the biology of anuran larvae. — University of Chicago Press, Chicago, IL.
34. Mitchell W.A. ( 2009). "Multi-behavioral strategies in a predator–prey game: an evolutionary algorithm analysis". — Oikos Vol 118: 1073- 1083. http://dx.doi.org/10.1111/j.1600-0706.2009.17204.x
35. Mitchell W.A. , Lima S.L. ( 2002). "Predator–prey shell games: large scale movement and its implications for decision-making by prey". — Oikos Vol 99: 249- 259. http://dx.doi.org/10.1034/j.1600-0706.2002.990205.x
36. Relyea R.A. , Werner E.E. ( 1999). "Quantifying the relation between predator-induced behavior and growth performance in larval anurans". — Ecology Vol 80: 2117- 2124. http://dx.doi.org/10.1890/0012-9658(1999)080[2117:QTRBPI]2.0.CO;2
37. Rosenheim J.A. ( 2004). "Top predators constrain the habitat selection games played by intermediate predators and their prey". — Int. J. Zool. Vol 50: 129- 138.
38. Roth T.C. , Lima S.L. ( 2007). "The predatory behavior of wintering Accipiter hawks: temporal patterns in activity of predators and prey". — Oecologia Vol 152: 169- 178. http://dx.doi.org/10.1007/s00442-006-0638-2
39. Shrader A.M. , Brown J.S. , Kerley G.I.H. , Kotler B.P. ( 2008). "Do free-ranging domestic goars show ‘landscape of fear’? Patch use in response to habitat features and predator cues". — J. Arid Environ. Vol 72: 1811- 1819. http://dx.doi.org/10.1016/j.jaridenv.2008.05.004
40. Sih A. ( 1984). "The behavioral response race between predator and prey". — Am. Nat. Vol 123: 143- 150. http://dx.doi.org/10.1086/284193
41. Sih A. ( 1998). "Game theory and predator–prey response races". — In: Advances in game theory and the study of animal behavior( Dugatkin L.A. , Reeve H.K. , eds). Oxford University Press, London, p.  221- 238.
42. Sih A. ( 2005). "Predator–prey space use as an emergent outcome of a behavioral response race". — In: Ecology of predator–prey interactions( Barbosa P. , Castellanos I. , eds). Oxford University Press, London, p.  240- 255.
43. Sih A. , Ziemba R. , Harding K.C. ( 2000). "New insights on how temporal variation in predation risk shapes prey behavior". — Trends Ecol. Evol. Vol 15: 3- 4. http://dx.doi.org/10.1016/S0169-5347(99)01766-8
44. Smee D.L. , Weissburg M.J. ( 2006). "Clamming up: environmental forces diminish the perceptive ability of bivalve prey". — Ecology Vol 87: 1587- 1596. http://dx.doi.org/10.1890/0012-9658(2006)87[1587:CUEFDT]2.0.CO;2
45. van Baalen M. , Sabelis M.W. ( 1993). "Coevolution of patch selection strategies of predator and prey and the consequences for ecological stability". — Am. Nat. Vol 142: 646- 670. http://dx.doi.org/10.1086/285562
46. van Baalen M. , Sabelis M.W. ( 1999). "Nonequilibrium population dynamics of “ideal and free” prey and predators". — Am. Nat. Vol 154: 69- 88. http://dx.doi.org/10.1086/303215
47. van der Merwe M. , Brown J.S. ( 2008). "Mapping the landscape of fear of the cape ground squirrel ( Xerus inauris)". — J. Mammal. Vol 89: 1162- 1169. http://dx.doi.org/10.1644/08-MAMM-A-035.1
48. Wirsing A.J. , Heithaus M.R. , Dill L.M. ( 2007). "Living on the edge: dugongs prefer foraging microhabitats that allow escape rather than avoidance of predators". — Anim. Behav. Vol 74: 93- 101. http://dx.doi.org/10.1016/j.anbehav.2006.11.016
49. Wisenden B.D. ( 2008). "Active space of chemical alarm cue in natural fish populations". — Behaviour Vol 145: 391- 407. http://dx.doi.org/10.1163/156853908783402920
http://brill.metastore.ingenta.com/content/journals/10.1163/156853912x645087
Loading

Article metrics loading...

/content/journals/10.1163/156853912x645087
2012-01-01
2016-12-07

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation