Cookies Policy
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Categorisation of Interpulse Intervals and Stochastic Analysis of Discharge Patterns in Resting Weak-Electric Mormyrid Fish (Gnathonemus Petersii)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

$30.00+ Tax (if applicable)
Add to Favorites

image of Behaviour

Inter-individual similarities in the electric organ discharge activity of immobile, isolated and undisturbed mormyrid fish were investigated. Two types of analysis were performed on the discharge patterns of 10 Gnathonemus petersii: (1) The Bout Interval Criterion method was used to categorise the intervals between consecutive electric pulses; (2) an analysis of sequences of acts was performed to study the serial ordering of the interpulse intervals. Interpulse intervals were demonstrated to belong to distinct classes, having similar limits for most animals. Most fish show five classes of interpulse intervals (23 to 68 ms; 69 to 108 ms; 109 to 170 ms; 171 to 212 ms; >212 ms), to which a sixth class (<23 ms) is added in some cases. Each class contains a similar number of intervals in all individuals. Particular associations were found between the occurrences of interpulse intervals belonging to different classes. Some of these associations (for example BB and EC) are displayed by most fish, whereas others express individual differences in the patterns of discharge. The discharge of immobile, undisturbed, isolated mormyrid fish is thus shown to present many similarities among individuals. Inter-individual differences exist only in the serial ordering of the intervals, where they arc best regarded as variations around a same theme. The absence of overlapping between the two main categories of interpulse intervals (category I: 69 to 108 ms; category II: 171 to 212 ms), as well as the constancy of their baselines, suggest that two oscillating systems participate to the electromotor command. The stochastic analysis of the serial ordering of the interpulse intervals suggest in addition that these two oscillators do not function independently. Momentaneous modifications of the activity of these two oscillators would provide an economical explanation for the various changes in the types of interpulse intervals associated with behavioural state or social interactions.


Article metrics loading...


Affiliations: 1: (Département de Neurophysiologie Sensorielle, Laboratoire de Physiologie Nerveuse, CNRS, LPN3, Gif-sur-Yvette, 91190, France


Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to email alerts
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation