Cookies Policy
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Predictions From the Ranging Hypothesis for the Evolution of Long Distance Signals in Birds

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

$30.00+ Tax (if applicable)
Add to Favorites

image of Behaviour

The Ranging Hypothesis (RH) (MORTON, 1982) proposed a form of distance assessment (ranging) based upon perception of signal degradation using memorized signals as a yardstick to distance. The predictions of the RH include distance assessment mechanisms, DAMs; it is proposed that these have opened a new evolutionary process illustrated by the complicated songs and singing behaviour in the oscine passerines ("songbirds"). The RH identifies sources of selection favouring learning, multiple or single song types, song structural complexity not accounted for by species isolating mechanism ideas, and emphasizes the ecological basis for the evolution of long distance communication. New importance is given to the acoustic physical structure of songs. The RH encompasses and contrasts song evolution in warm climate regions with those in cold temperate climates. Three interrelated stages of long distance signal evolution are presented: detectability, threat, and disrupt. A singer/listener role dichotomy in selective pressures is described and the results discussed. Listeners developed distance assessment mechanisms (DAMs) resulting in an evolutionary arms race between listeners and singers. Singers developed methods to use DAMs to their best interest (threat and disrupt). Song learning in passerines developed in response to this arms race to enhance disruption, a situation most prevalent in cold temperate zone regions. The acoustic determinants of effective song distance are described and discussed in relation to the evolution of signal structures. Finally, the RH is discussed in relation to some previous hypotheses on song function and evolution.


Article metrics loading...


Affiliations: 1: (Department of Zoological Research, Smithsonian Institution, National Zoological Park, Washington, D.C. 20008, U.S.A.


Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to email alerts
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation