Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Family Planning in the Kestrel (Falco Tinnunculus): the Proximate Control of Covariation of Laying Date and Clutch Size

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

The time in spring when a male kestrel rapidly increases his daily hunting time and his hunting yield, and thereby the amount of food delivered to the female, determines the date when she lays the first egg. Food experiments in free-living and captive kestrels gave a significant advance in laying date. Clutch size, which decreases with progressive laying date, did not change independent of date in response to food manipulation. These effects are in agreement with most other feeding experiments. Photoperiod experiments in kestrels advanced the reproductive cycle in constant long days, and a similar seasonal decline in clutch size was found. It seems that there is an internally preprogrammed decrease in clutch size within an annual "reproductive window". A proximate control model for the seasonal decline of clutch size is proposed, modified from an earlier model by HAFTORN (1985). This incorporates an increasing tendency to incubate the first eggs with progression of the season, an egg contact-incubation positive feedback loop, and the resorption of further follicles in the ovary when the laying female incubates 50% of the time. This follicle resorption fixes the clutch size ca. four days before the last egg is laid. the 50% incubation level is reached earlier in late females and consequently resorption starts earlier and the resulting clutch is smaller than in early females. Experiments in kestrels with removal and addition of eggs, in combination with measurements of incubation behaviour are discussed in relation to the model. Plasma prolactin data of female kestrels show that this hormone is a serious candidate for a physiological component relaying time of year in our model for clutch size regulation.

Affiliations: 1: Zoological Laboratory, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands; 2: A.R.C. Research Group on Photoperiodism and Reproduction, Department of Zoology, University of Bristol, BS8 1UG, U.K.

10.1163/156853990X00077
/content/journals/10.1163/156853990x00077
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156853990x00077
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156853990x00077
Loading

Article metrics loading...

/content/journals/10.1163/156853990x00077
1990-01-01
2016-12-06

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation