Cookies Policy
X
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

WITHIN-COLONY RELATEDNESS IN A TERMITE SPECIES: GENETIC ROADS TO EUSOCIALITY?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

Price:
$30.00+ Tax (if applicable)
Add to Favorites

Hamilton's theory predicts that relatedness asymmetries, with higher relatedness between alloparents and brood than between parents and brood, favour the evolution of eusociality. The haplodiploid reproductive system of the social Hymenoptera does indeed produce relatedness asymmetries, but the diplodiploid system of the eusocial Isoptera does not automatically do so. Three mechanisms that might favour relatedness asymmetries, and therefore eusociality, in termites have been extensively debated: First, substantial inbreeding generates the background for effective kin-selection. Second, inbreeding-outbreeding cycles within and between colonies cause a higher relatedness between individuals of the same generation than between them and their potential offspring. This would be analogous to the haplodiploid system. Third, translocation complexes of sex-linked chromosomes may generate higher relatedness within sexes than between sexes, again analogous to the haplodiploid system. We tested these three hypotheses for the African termite Schedorhinotermes lamanianus (Isoptera, Rhinotermitidae) using estimates of within-colony relatedness derived by multilocus DNA fingerprinting with a synthetic oligonucleotide probe. We found little support for any of the three hypotheses. We observed inbreeding to occur only during one or a few generations within colonies, which is unlikely to be an operational basis for ongoing kin-selection. Overall, we conclude that ecological factors and constraints must be considered a major selective force.

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Create email alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Name:*
    Email:*
    Your details
    Name:*
    Email:*
    Department:*
    Why are you recommending this title?
    Select reason:
     
     
     
     
    Other:
     
    Behaviour — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation