Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The utility of the T-maze in assessing learning, memory, and models of neurological disorders in the zebrafish

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

The field of zebrafish research has a firm foundation in the realm of genetics and developmental biology. The volume of research in this area, coupled with concerted efforts at replication and validation of the findings have effectively established the zebrafish model as an important one within these fields. A host of studies have expanded the utility of this model into the fields of neuroscience, cognition, and behavior (broadly defined). With the recent sequencing of the genome, along with the ease and availability of genetic mutant models, the opportunity exists to expand upon the knowledge of the genetic origins and the influencing factors of genes on neurobehavioral components, most notably, learning and memory. Biochemical, histological, neurological, and anatomical data suggest that zebrafish are a viable model of human disease states and a solid candidate for the screening of pharmacotherapies. In order to effectively assess the effects of experimentally administered drugs, it is imperative that we have a thorough baseline understanding of zebrafish behavior and performance on learning and memory tasks. Not only must these tests be developed, but they must also be empirically assessed and found to be both reliable and valid. To this end, zebrafish researchers have implemented the use of the T-maze.

Affiliations: 1: Department of Psychology, The University of Southern Mississippi, 118 College Drive, Box 5025, Hattiesburg, MS 39406, USA

10.1163/1568539X-00003027
/content/journals/10.1163/1568539x-00003027
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/1568539x-00003027
Loading

Data & Media loading...

1. Al-Imari L. , Gerlai R. ( 2008). "Sight of conspecifics as reward in associative learning in zebrafish ( Danio rerio)". — Behav. Brain Res. Vol 189: 216- 219. http://dx.doi.org/10.1016/j.bbr.2007.12.007
2. Avdesh A. , Martin-Iverson M. , Mondal A. , Chen M. , Askraba S. , Morgan N. , Lardelli M. , Groth D.M. , Verdile G. , Martins R.N. ( 2012). "Evaluation of color preference in zebrafish for learning and memory". — J. Alzheimers Dis. Vol 28: 459- 469.
3. Best J. , Alderton W. ( 2008). "Zebrafish: an in vivo model for the study of neurological diseases". — Neuropsychiatr. Dis. Treat. Vol 4: 567- 576. http://dx.doi.org/10.2147/NDT.S2056
4. Bilotta J. , Risner M.L. , Davis E.C. , Haggbloom S.J. ( 2005). "Assessing appetitive choice discrimination learning in zebrafish". — Zebrafish Vol 2: 259- 268. http://dx.doi.org/10.1089/zeb.2005.2.259
5. Brito G.N.O. , Davis B.J. , Stopp L.C. , Stanton M.E. ( 1983). "Memory and the septo-hippocampal cholinergic system in the rat". — Psychopharmacology Vol 81: 315- 320. http://dx.doi.org/10.1007/BF00427569
6. Colwill R.M. , Raymond M.P. , Ferreira L. , Escudero H. ( 2005). "Visual discrimination learning in zebrafish ( Danio rerio)". — Behav. Process. Vol 70: 19- 31. http://dx.doi.org/10.1016/j.beproc.2005.03.001
7. Daum I. , Schugens M.M. , Channon S. , Polkey C.E. , Gray J.A. ( 1991). "T-maze discrimination and reversal learning after unilateral temporal or frontal lobe lesions in man". — Cortex Vol 27: 613- 622. http://dx.doi.org/10.1016/S0010-9452(13)80010-X
8. Deacon R.M.J. , Rawlins J.N.P. ( 2006). "T-maze alternation in the rodent". — Nature Protocols Vol 1: 7- 12. http://dx.doi.org/10.1038/nprot.2006.2
9. Eddins D. , Petro A. , Williams P. , Cerutti D.T. , Levin E.D. ( 2009). "Nicotine effects on learning in zebrafish: the role of dopaminergic systems". — Psychopharmacology Vol 202: 103- 109. http://dx.doi.org/10.1007/s00213-008-1287-4
10. Farr S.A. , Flood J.A. , Morley J.E. ( 2000). "The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posttrial memory processing in the hippocampus". — Neurobiol. Learn. Mem. Vol 73: 150- 167. http://dx.doi.org/10.1006/nlme.1999.3927
11. Gaikwad S. , Stewart A. , Hart P. , Wong K. , Piet V. , Cachat J. , Kalueff A.V. ( 2011). "Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: the utility of fish models to study stress-memory interplay". — Behav. Process. Vol 87: 224- 230. http://dx.doi.org/10.1016/j.beproc.2011.04.004
12. Gerlai R. ( 2001). "Behavioral tests of hippocampal function: simple paradigms complex problems". — Behav. Brain Res. Vol 125: 269- 277. http://dx.doi.org/10.1016/S0166-4328(01)00296-0
13. Gould G.G. ( 2011). "Modified associative learning T-maze test for zebrafish ( Danio rerio) and other small teleost fish". — Neuromethods Vol 51: 61- 73.
14. Guo S. ( 2004). "Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish?"— Genes Brain Behav. Vol 3: 63- 74. http://dx.doi.org/10.1046/j.1601-183X.2003.00053.x
15. Guo S. ( 2009). "Using zebrafish to assess the impact of drugs on neural development and function". — Expert Opin. Drug Discov. Vol 4: 715- 726. http://dx.doi.org/10.1517/17460440902988464
16. Kabashi E. , Brustein E. , Champagne N. , Drapeau P. ( 2011). "Zebrafish models for the functional genomics of neurogenic disorders". — Biochim. Biophys. Acta Vol 1812: 335- 345. http://dx.doi.org/10.1016/j.bbadis.2010.09.011
17. Karnik I. , Gerlai R. ( 2012). "Can zebrafish learn spatial tasks? An empirical analysis of place and single CS-US associative learning". — Behav. Brain Res. Vol 233: 415- 421. http://dx.doi.org/10.1016/j.bbr.2012.05.024
18. Kinkel M.D. , Eames S.C. , Philipson L.H. , Prince V.E. ( 2010). "Intraperitoneal injection into adult zebrafish". — J. Vis. Exp. Vol 42: 2126.
19. Lalonde R. ( 2002). "The neurobiological basis of spontaneous alternation". — Neurosci. Biobehav. Rev. Vol 26: 91- 104. http://dx.doi.org/10.1016/S0149-7634(01)00041-0
20. Lapiz M.D.S. , Bondi C.O. , Morilak D.A. ( 2007). "Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test". — Neuropsychopharmacology Vol 32: 1000- 1010. http://dx.doi.org/10.1038/sj.npp.1301235
21. Levin E.D. ( 2011). "Zebrafish assessment of cognitive improvement and axiolysis: filling the gap between in vitro and rodent models for drug development". — Rev. Neurosci. Vol 22: 75- 84. http://dx.doi.org/10.1515/rns.2011.009
22. Locchi F. , Dall’Olio R. , Gandolfi O. , Rimondini R. ( 2007). "Water T-maze, an improved method to assess spatial working memory in rats: pharmacological validation". — Neurosci. Lett. Vol 422: 213- 216. http://dx.doi.org/10.1016/j.neulet.2007.06.023
23. Malicki J.J. , Pujic Z. , Thisse C. , Thisse B. , Wei X. ( 2002). "Forward and reverse genetic approaches to the analysis of eye development in zebrafish". — Vision Res. Vol 42: 527- 533. http://dx.doi.org/10.1016/S0042-6989(01)00262-0
24. Myhrer T. ( 2003). "Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks". — Brain Res. Rev. Vol 41: 268- 287. http://dx.doi.org/10.1016/S0165-0173(02)00268-0
25. Panula P. , Chen Y.-C. , Priyadarshini M. , Kudo H. , Semenova S. , Sundvik M. , Sallinen V. ( 2010). "The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases". — Neurobiol. Dis. Vol 40: 46- 57. http://dx.doi.org/10.1016/j.nbd.2010.05.010
26. Portavellia M. , Vargas J.P. , Torres B. , Salas C. ( 2002). "The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish". — Brain Res. Bull. Vol 57: 397- 399. http://dx.doi.org/10.1016/S0361-9230(01)00699-2
27. Restle F. ( 1957). "Discrimination of cues in mazes: a resolution of the “place-vs.-response” question". — Psychol. Rev. Vol 64: 217- 228. http://dx.doi.org/10.1037/h0040678
28. Rico E.P. , Rosemberg D.B. , Seibt K.J. , Capiotti K.M. , Da Silva R.S. , Bonan C.D. ( 2011). "Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets". — Neurotoxicol. Teratol. Vol 33: 608- 617. http://dx.doi.org/10.1016/j.ntt.2011.07.007
29. Rink E. , Guo S. ( 2004). "The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain". — Neuroscience Vol 127: 147- 154. http://dx.doi.org/10.1016/j.neuroscience.2004.05.004
30. Rinkwitz S. , Mourrain P. , Becker T.S. ( 2011). "Zebrafish: an integrative system for neurogenomics and neurosciences". — Prog. Neurobiol. Vol 93: 231- 243. http://dx.doi.org/10.1016/j.pneurobio.2010.11.003
31. Schneider H. , Fritzky L. , Williams J. , Heumann C. , Yochum M. , Pattar K. , Noppert F. , Mock V. , Hawley E. ( 2012). "Cloning and expression of a zebrafish 5-HT 2Creceptor gene". — Gene Vol 502: 108- 117. http://dx.doi.org/10.1016/j.gene.2012.03.070
32. Sharma S. , Rackoczy S. , Brown-Borg H. ( 2010). "Assessment of spatial memory in mice". — Life Sci. Vol 87: 521- 536. http://dx.doi.org/10.1016/j.lfs.2010.09.004
33. Sison M. , Gerlai R. ( 2010). "Associative learning in zebrafish ( Danio rerio)". — Behav. Brain Res. Vol 207: 99- 104. http://dx.doi.org/10.1016/j.bbr.2009.09.043
34. Swain H.A. , Sigstad C. , Scalzo F.M. ( 2004). "Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish ( Danio rerio)". — Neurotoxicol. Teratol. Vol 26: 725- 729. http://dx.doi.org/10.1016/j.ntt.2004.06.009
35. Tolman E.C. ( 1948). "Cognitive maps in rats and men". — Psychol. Rev. Vol 55: 189- 208. http://dx.doi.org/10.1037/h0061626
36. Tropepe V. , Sive H.L. ( 2003). "Can zebrafish be used as a model to study the neurodevelopmental causes of autism?"— Genes Brain Behav. Vol 2: 268- 281. http://dx.doi.org/10.1034/j.1601-183X.2003.00038.x
37. Yang S. , Kim W. , Chol B. , Koh H. , Lee C. ( 2003). "Alcohol impairs learning of T-maze task but not active avoidance task in zebrafish". — Korean J. Biol. Sci. Vol 7: 303- 307. http://dx.doi.org/10.1080/12265071.2003.9647720
http://brill.metastore.ingenta.com/content/journals/10.1163/1568539x-00003027
Loading

Article metrics loading...

/content/journals/10.1163/1568539x-00003027
2012-01-01
2016-12-11

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation