Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The alarm cue obstruction hypothesis: isopods respond to alarm cues, but do not respond to dietary chemical cues from predatory bluegill

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Predator avoidance behaviours occur when prey detect a predator but the predator has not yet detected and identified prey. These defences are critical because they prevent predation at the earliest possible stages when prey have the best chance of escape. We tested for predator avoidance behaviours in an aquatic macroinvertebrate (Caecidotea intermedius; order Isopoda) in a series of three experiments. The first experiment attempted to determine if isopods possess alarm cues by exposing them to stimuli from macerated conspecifics. We then exposed isopods to kairomones from non-predatory tadpoles (Rana catesbiana) and predatory fish (Lepomis macrochirus) that had been fed a benign diet. Finally, we exposed isopods to kairomones of predatory fish that had been fed a diet exclusively of isopods. We found that isopods did not respond to any kairomone cues or dietary cues from any potential predator, but did reduce activity in response to alarm cues. These results suggest that isopods exhibit predator avoidance responses toward chemical cues in a limited setting (they do not respond unless the information suggests an attack has occurred in the immediate past) or that bluegill have the ability to modify or mask the alarm cues from their prey.

Affiliations: 1: Department of Biology, Hanover College, Hanover, IN 47243, USA

10.1163/1568539X-00003237
/content/journals/10.1163/1568539x-00003237
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/1568539x-00003237
Loading

Data & Media loading...

1. Brodie E.D. III , Brodie E.D. Jr. ( 1999). "Predator–prey arms races". — Bioscience Vol 49: 557- 568. http://dx.doi.org/10.2307/1313476
2. Brodie E.D. Jr. , Formanowicz D.R. Jr. , Brodie E.D. III ( 1991). "Predator avoidance and antipredator mechanisms: distinct pathways to survival". — Ethol. Ecol. Evol. Vol 3: 73- 77. http://dx.doi.org/10.1080/08927014.1991.9525390
3. Brown G.B. , Eisner T. , Whittaker A.C. ( 1970). "Allomones and kairomones: transpecific chemical messengers". — Bioscience Vol 20: 21- 22. http://dx.doi.org/10.2307/1294753
4. Brown G.E. ( 2003). "Learning about danger: chemical alarm cues and local risk assessment in prey fishes". — Fish Fish. Vol 4: 227- 234. http://dx.doi.org/10.1046/j.1467-2979.2003.00132.x
5. Chivers D.P. , Smith R.J.F. ( 1998). "Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus". — Ecoscience Vol 5: 338- 352.
6. Crowl T.A. , Covich A.P. ( 1990). "Predator-induced life-history shifts in a freshwater snail". — Science Vol 247: 949- 951. http://dx.doi.org/10.1126/science.247.4945.949
7. Endler J.A. ( 1986). "Defense against predators". — In: Predator–prey relationships( Feder M.E. , Lauder G.V. , eds). University of Chicago Press, Chicago, IL, p.  109- 134.
8. Feminella J.W. , Hawkins C.P. ( 1994). "Tailed frog tadpoles differentially alter their feeding behavior in response to non-visual cues from four predators". — J. N. Am. Benthol. Soc. Vol 13: 310- 320. http://dx.doi.org/10.2307/1467249
9. Ferrari M.C.O. , Messier F. , Chivers D.P. ( 2008). "Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs". — Chemoecology Vol 17: 263- 266. http://dx.doi.org/10.1007/s00049-007-0381-0
10. Ferrari M.C.O. , Wisenden B.D. , Chivers D.P. ( 2010). "Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus". — Can. J. Zool. Vol 88: 698- 724. http://dx.doi.org/10.1139/Z10-029
11. Graca M.A.S. , Maltby L. , Calow P. ( 1993). "Importance of fungi in the diet of Gammarus pulexand Asellus aquaticus: feeding strategies". — Oecologia Vol 93: 139- 144. http://dx.doi.org/10.1007/BF00321203
12. Harris S. , Green K.K. , Pettersson L.B. ( 2013). "Predator faunas past and present: quantifying the influence of waterborne cues in divergent ecotypes of the isopod Asellus aquaticus ". — Oecologia Vol 173: 791- 799. http://dx.doi.org/10.1007/s00442-013-2667-y
13. Holomuzki J.R. , Hatchett L.A. ( 1994). "Predator avoidance costs and habituation to fish chemicals by a stream isopod". — Freshw. Biol. Vol 32: 585- 592. http://dx.doi.org/10.1111/j.1365-2427.1994.tb01149.x
14. Holomuzki J.R. , Short T.M. ( 1988). "Habitat use and fish avoidance behaviors by the stream-dwelling isopod Lirceus fontinalis ". — Oikos Vol 52: 79- 86. http://dx.doi.org/10.2307/3565985
15. Holomuzki J.R. , Short T.M. ( 1990). "Ontogenetic shifts in habitat use and activity in a stream-dwelling isopod". — Ecography Vol 13: 300- 307. http://dx.doi.org/10.1111/j.1600-0587.1990.tb00622.x
16. Hopkins G.R. , Gall B.G. , Brodie E.D. Jr. ( 2011). "Ontogenetic shift in efficacy of antipredator mechanisms in a top aquatic predator, Anax junius(Odonata: Aeshnidae)". — Ethology Vol 117: 1093- 1100. http://dx.doi.org/10.1111/j.1439-0310.2011.01963.x
17. Howe N.R. , Harris L.G. ( 1978). "Transfer of the sea anemone pheromone, anthopleurine, by the nudibranch Aeolidia papillosa ". — J. Chem. Ecol. Vol 4: 551- 561. http://dx.doi.org/10.1007/BF00988919
18. Jacobsen H.P. , Stabell O.B. ( 2004). "Antipredator behaviour mediated by chemical cues: the role of conspecific alarm signalling and predator labelling in the avoidance response of a marine gastropod". — Oikos Vol 104: 43- 50. http://dx.doi.org/10.1111/j.0030-1299.2004.12369.x
19. Kats L.B. , Dill L.M. ( 1998). "The scent of death: chemosensory assessment of predation risk by prey animals". — Ecoscience Vol 5: 361- 394.
20. Keast A. ( 1970). "Food specializations and bioenergetic interrelations in the fish faunas of some small ontario waterways". — In: Marine food chains( Steele J.H. , ed.). Oliver and Boyd, Edinburgh, p.  377- 411.
21. Keefe M. ( 1992). "Chemically mediated avoidance behavior in wild brook trout, salvelinus fontinalis: the response to familiar and unfamiliar predaceous fishes and the influence of fish diet". — Can. J. Zool. Vol 70: 288- 292. http://dx.doi.org/10.1139/z92-043
22. Lima S.L. , Bednekoff P.A. ( 1999). "Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis". — Am. Nat. Vol 153: 649- 659. http://dx.doi.org/10.1086/303202
23. Lima S.L. , Dill L.M. ( 1990). "Behavioral decisions made under the risk of predation: a review and prospectus". — Can. J. Zool. Vol 68: 619- 640. http://dx.doi.org/10.1139/z90-092
24. Mathis A. , Smith R.J.F. ( 1993). "Chemical alarm signals increase the survival time of fathead minnows ( Pimephales promelas) during encounters with northern pike ( Esox lucius)". — Behav. Ecol. Vol 4: 260- 265. http://dx.doi.org/10.1093/beheco/4.3.260
25. Mirza R.S. , Chivers D.P. ( 2003). "Fathead minnows learn to recognize heterospecific alarm cues they detect in the diet of a known predator". — Behaviour Vol 140: 1359- 1370. http://dx.doi.org/10.1163/156853903771980620
26. Moore J.W. ( 1975). "The role of algae in the diet of Asellus aquaticusL. and Gammarus pulexL."— J. Anim. Ecol. Vol 44: 719- 730. http://dx.doi.org/10.2307/3714
27. Rohr J.R. , Madison D.M. ( 2001). "A chemically mediated trade-off between predation risk and mate search in newts". — Anim. Behav. Vol 62: 863- 869. http://dx.doi.org/10.1006/anbe.2001.1816
28. Schoeppner N.M. , Relyea R.A. ( 2005). "Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences". — Ecol. Lett. Vol 8: 505- 512. http://dx.doi.org/10.1111/j.1461-0248.2005.00744.x
29. Schramm H.L. Jr. , Jirka K.J. ( 1989). "Epiphytic macroinvertebrates as a food resource for bluegills in Florida lakes". — Trans. Am. Fish. Soc. Vol 118: 416- 426. http://dx.doi.org/10.1577/1548-8659(1989)118<0416:EMAAFR>2.3.CO;2
30. Short T.M. , Holomuzki J.R. ( 1992). "Indirect effects of fish on foraging behaviour and leaf processing by the isopod Lirceus fontinalis ". — Freshw. Biol. Vol 27: 91- 97. http://dx.doi.org/10.1111/j.1365-2427.1992.tb00526.x
31. Smith R.J.F. ( 1977). "Chemical communication as adaptation: alarm substance of fish". — In: Chemical signals in vertebrates. Springer, Berlin, p.  303- 320. http://dx.doi.org/10.1007/978-1-4684-2364-8_17
32. Smith R.J.F. ( 1992). "Alarm signals in fishes". — Rev. Fish Biol. Fish. Vol 2: 33- 63. http://dx.doi.org/10.1007/BF00042916
33. Sutrisno R. , Schotte P.M. , Wisenden B.D. ( 2014). "Chemical arms race between predator and prey: a test of predator digestive countermeasures against chemical labeling by dietary cues of prey". — J. Freshw. Ecol. Vol 29: 17- 23. http://dx.doi.org/10.1080/02705060.2013.804886
34. Vollmer K.L. , Gall B.G. ( 2014). "Complex predator–prey interactions between the rusty crayfish ( Orconectes rusticus) and invertebrate and vertebrate prey within their native range". — J. Freshw. Ecol. Vol 29: 1- 11. http://dx.doi.org/10.1080/02705060.2013.836726
35. Wilson D.J. , Lefcort H. ( 1993). "The effect of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles". — Anim. Behav. Vol 46: 1017- 1019. http://dx.doi.org/10.1006/anbe.1993.1285
36. Wisenden B.D. , Cline A. , Sparkes T.C. ( 1999). "Survival benefit to antipredator behavior in the amphipod Gammarus minus(Crustacea: Amphipoda) in response to injury released chemical cues from conspecifics and heterospecifics". — Ethology Vol 105: 407- 414. http://dx.doi.org/10.1046/j.1439-0310.1999.00399.x
37. Wisenden B.D. , Rugg M.L. , Korpi N.L. , Fuselier L.C. ( 2009). "Lab and field estimates of active time of chemical alarm cues of a cyprinid fish and an amphipod crustacean". — Behaviour Vol 146: 1423- 1442. http://dx.doi.org/10.1163/156853909X440998
38. Wooster D. , Sih A. ( 1995). "A review of the drift and activity responses of stream prey to predator presence". — Oikos Vol 73: 3- 8. http://dx.doi.org/10.2307/3545718
http://brill.metastore.ingenta.com/content/journals/10.1163/1568539x-00003237
Loading

Article metrics loading...

/content/journals/10.1163/1568539x-00003237
2015-01-13
2018-06-20

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation