Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effect of substrate temperature on behavioural plasticity in antlion larvae

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Temperature is of crucial importance, affecting all aspects of insect life such as survival, development and daily activity patterns, and consequently behaviour. In the present study we evaluated the effect of temperature on the behavioural plasticity of antlion larvae, the sit-and-wait predators, which are considerably more dependent on local habitat conditions. We provided ethological descriptions of pit construction and feeding behaviour. An increase in temperature led to greater activity and consequently to greater frequency of sand tossing during pit construction. Larvae constructed bigger pits at higher temperatures, but required less time than at lower temperatures, when the resulting pits were the smallest. At low temperature, larvae required more time for feeding, and behaviour followed a core pattern with little variety, in comparison to behaviour at high temperatures. Two behavioural patterns occurred only at the highest temperature: ‘relocation’ and ‘submergence’, presumably in response to high temperatures.

Affiliations: 1: aDepartment of Biology and Institute of Biology, Ecology and Nature Conservation, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, 2000 Maribor, Slovenia; 2: bRogoznica 10, 2232 Voličina, Slovenia


Full text loading...


Data & Media loading...

1. Ábrahám L. (2003). "Temperature tolerance and predatory strategy of pit-building ant-lion larvae (Neuroptera: Myrmeleontidae)". — Acta Phytopathol. Hun. Vol 38: 167-179. [Crossref]
2. Arnett A.E. , Gotelli N.J. (1999). "Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule". — Evolution Vol 53: 1180-1188. [Crossref]
3. Arnett A.E. , Gotelli N.J. (2001). "Pit-building decisions of larval ant lions: effects of larval age, temperature, food, and population source". — J. Insect Behav. Vol 14: 89-97. [Crossref]
4. Bale J.S. (2002). "Insects at low temperatures: from molecular biology to distributions and abundance". — Philos. T. Roy. Soc. B Vol 357: 849-862. [Crossref]
5. Barkae E.D. , Scharf I. , Subach A. , Ovadia O. (2010). "The involvement of sand disturbance, cannibalism and intra-guild predation in competitive interactions among pit-building antlion larvae". — Zoology Vol 113: 308-315. [Crossref]
6. Barkae E.D. , Scharf I. , Abramsky Z. , Ovadia O. (2012). "Jack of all trades, master of all: a positive association between habitat niche breadth and foraging performance in pit-building antlion larvae". — PLoS ONE Vol 7: e33506. [Crossref]
7. Bongers J. , Koch M. (1981). "Trichterbau des Ameisenlöwen Euroleon nostras Fourcr". — Neth. J. Zool. Vol 31: 329-341. [Crossref]
8. Dell A.I. , Pawar S. , Savage V.M. (2014). "Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy". — J. Anim. Ecol. Vol 83: 70-84. [Crossref]
9. Devetak D. , Arnett A.E. (2015). "Preference of antlion and wormlion larvae (Neuroptera: Myrmeleontidae; Diptera: Vermileonidae) for substrates according to substrate particle sizes". — Eur. J. Entomol. Vol 112: 500-509. [Crossref]
10. Devetak D. , Špernjak A. , Janžekovič F. (2005). "Substrate particle size affects pit building decision and pit size in the antlion larvae Euroleon nostras (Neuroptera: Myrmeleontidae)". — Physiol. Entomol. Vol 30: 158-163. [Crossref]
11. Devetak D. , Novak T. , Janžekovič F. (2012). "Effect of substrate density on behavior of antlion larvae (Neuroptera: Myrmeleontidae)". — Acta Oecol. Vol 43: 1-7. [Crossref]
12. Dixon A.F.G. , Honěk A. , Keil P. , Kotela M.A.A. , Šizling A.L. , Jarošík V. (2009). "Relationship between the minimum and the maximum temperature thresholds for development in insects". — Funct. Ecol. Vol 23: 257-264. [Crossref]
13. Falibene A. , Josens R. (2014). "Environmental temperature affects the dynamics of investigation in the nectivorous ant Camponotus mus ". — J. Insect Physiol. Vol 71: 14-20. [Crossref]
14. Geiler H. (1966). "Über die Wirkung der Sonneneinstrahlung auf Aktivität und Position der Larven von Euroleon nostras Fourcr. (= Myrmeleon europeus McLachl.) in der Trichterbodenfallen". — Z. Morphol. Ökol. Tiere Vol 56: 260-274. [Crossref]
15. Gepp J. (2010). Ameisenlöwen und Ameisenjungfern. Myrmeleontidae. — Westarp Wissenschaften, Hohenwarsleben.
16. Gillooly J.F. , Brown J.H. , West G.B. , Savage V.M. , Charnov E.L. (2001). "Effect of size and temperature on metabolic rate". — Science Vol 293: 2248-2251. [Crossref]
17. Green G.W. (1955). "Temperature relations of ant-lion larvae (Neuroptera: Myrmeleontidae)". — Can. Entomol. Vol 87: 441-459. [Crossref]
18. Griffiths D. (1980). "The feeding biology of ant-lion larvae: prey capture, handling and utilization". — J. Anim. Ecol. Vol 49: 99-125. [Crossref]
19. Haub J.G. (1942). "The pit building activities of Ohio ant-lions". — Ohio J. Sci. Vol 42: 113-116.
20. Heinrich B. , Heinrich M.J.E. (1984). "The pit-trapping foraging strategy of the antlion, Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae)". — Behav. Ecol. Sociobiol. Vol 14: 151-160. [Crossref]
21. Hoffman A.A. , Hallas R. , Sinclair C. , Mitrowski P. (2001). "Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits". — Evolution Vol 55: 1621-1630. [Crossref]
22. Hoffman A.A. , Chown S.L. , Clusella-Trullas S. (2013). "Upper thermal limits in terrestrial ecotherms: how constrained are they?" — Funct. Ecol. Vol 27: 934-949. [Crossref]
23. Huey R.B. , Hertz P.E. (1984). "Is a jack-of-all-temperatures a master of none?" — Evolution Vol 38: 441-444. [Crossref]
24. Huey R.B. , Kingsolver J.G. (1993). "Evolution of resistance to high temperature in ectotherms". — Am. Nat. Vol 142: 21-26. [Crossref]
25. Ju R.T. , Gao L. , Zhou X.H. , Li B. (2014). "Physiological responses of Corythucha ciliata adults to high temperatures under laboratory and field conditions". — J. Therm. Biol. Vol 45: 15-21. [Crossref]
26. Kingsolver J.G. , Huey R.B. (2008). "Size, temperature, and fitness: three rules". — Evol. Ecol. Res. Vol 10: 251-268.
27. Klein B.G. (1982). "Pit construction by antlion larvae: influences of soil illumination and soil temperature". — J. N.Y. Entomol. Soc. Vol 90: 26-30.
28. Klokočovnik V. , Devetak D. (2014). "Pit-builder vs non-pit-builder: advantage of trap building strategy in antlion larvae does not mean greater behaviour diversity". — Behaviour Vol 151: 653-668. [Crossref]
29. Klokočovnik V. , Devetak D. , Orlačnik M. (2012). "Behavioral plasticity and variation in pit construction of antlion larvae in substrates with different particle sizes". — Ethology Vol 118: 1-9. [Crossref]
30. Lackinger H. (1973). "Unterschiede im Verhalten zwischen Larven einiger Ameisenlöwenarten einschliesslich des Wurmlöwen (Vermileo vermileo) beim Sandfallenbau". — Z. Arbeitsgem. Österr. Entomol. Vol 24: 66-72.
31. Lomáscolo S. , Farji-Brener A.G. (2001). "Adaptive short-term changes in pit design by antlion larvae (Myrmeleon sp.) in response to different prey conditions". — Ethol. Ecol. Evol. Vol 13: 393-397. [Crossref]
32. Loria R. , Scharf I. , Subach A. , Ovadia O. (2008). "The interplay between foraging mode, habitat structure, and predator presence in antlions". — Behav. Ecol. Sociobiol. Vol 62: 1185-1192. [Crossref]
33. Lucas J.R. (1985). "Metabolic rates and pit-construction costs of two antlion species". — J. Anim. Ecol. Vol 54: 295-309. [Crossref]
34. Lucas J.R. (1989). "The structure and function of antlion pits: slope asymmetry and predator-prey interactions". — Anim. Behav. Vol 38: 318-330. [Crossref]
35. Mansell M.W. (1996). Predation strategies and evolution in antlions (Insecta; Neuroptera: Mymeleontidae). — Pure and Applied Research in Neuropterology; Proceedings of the Fifth International Symposium on Neuropterology 5: 161-169.
36. Marsh A.C. (1987). "Thermal responses and temperature tolerance of a desert ant-lion larva". — J. Therm. Biol. Vol 12: 295-300. [Crossref]
37. Morrison L.W. (2004). "Spatiotemporal variation in antlion (Neuroptera, Myrmeleontidae) density and impacts on ant (Hymenoptera: Formicidae) and generalized arthropod foraging". — Ann. Entomol. Soc. Am. Vol 97: 913-922. [Crossref]
38. Rotkopf R. , Barkae E.D. , Bar-Hanin E. , Alcalay Y. , Ovadia O. (2012). "Multi-axis niche examination of ecological specialization: responses to heat, desiccation and starvation stress in two species of pit-building antlions". — PLoS ONE Vol 7: e50884. [Crossref]
39. Scharf I. , Ovadia O. (2006). "Factors influencing site abandonment and site selection in a sit-and-wait predator: a review of pit-building antlion larvae". — J. Insect Behav. Vol 19: 197-218. [Crossref]
40. Scharf I. , Filin I. , Golan M. , Buchshtav M. , Subach A. , Ovadia O. (2008a). "A comparison between desert and Mediterranean antlion populations: differences in life history and morphology". — J. Evol. Biol. Vol 21: 162-172.
41. Scharf I. , Hollender Y. , Subach A. , Ovadia O. (2008b). "Effect of spatial pattern and microhabitat on pit construction and relocation in Myrmeleon hyalinus (Neuroptera: Myrmeleontidae) larvae". — Ecol. Entomol. Vol 33: 337-345. [Crossref]
42. Scharf I. , Subach A. , Ovadia O. (2008c). "Foraging behaviour and habitat selection in pit-building antlion larvae in constant light or dark conditions". — Anim. Behav. Vol 76: 2049-2057. [Crossref]
43. Scharf I. , Lubin Y. , Ovadia O. (2011). "Foraging decisions and behavioural flexibility in trap-building predators: a review". — Biol. Rev. Vol 86: 626-639. [Crossref]
44. Sentis A. , Hemptinne J.L. , Brodeur J. (2012). "Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic effciency". — Oecologia Vol 169: 1117-1125. [Crossref]
45. Sinclair B.J. , Vernon P. , Klok C.J. , Chown S.L. (2003). "Insects at low temperatures: an ecological perspective". — Trends Ecol. Evol. Vol 18: 257-262. [Crossref]
46. van Zyl A. , van der Linde T.C.D.K. , Grimbeek R.J. (1997). "Metabolic rates of pitbuilding and non-pitbuilding antlion larvae (Neuroptera: Myrmeleontidae) from southern Africa". — J. Arid Environ Vol 37: 355-365. [Crossref]
47. Verble-Pearson R.M. , Gifford M.E. , Yanoviak S.P. (2015). "Variation in thermal tolerance of North American ants". — J. Therm. Biol. Vol 48: 65-68. [Crossref]
48. Woods H.A. , Harrison J.F. (2002). "Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive?" — Evolution Vol 56: 1863-1866. [Crossref]
49. Youthed G.J. (1973). Some adaptations of myrmeleontid (Neuroptera) and rhagionid (Diptera) larvae to life in hot dry sand. PhD thesis, Rhodes University, Grahamstown.
50. Youthed G.J. , Moran V.C. (1969). "Pit construction by myrmeleontid larvae". — J. Insect Physiol. Vol 15: 867-875. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation