Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Temporal dynamics of intersexual conflict and the effect of male quality on female fecundity in the marine isopod Cleantiella isopus

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Crustacean males grasp and/or guard females before copulation to ensure mating, but females typically resist males during pair formation. The benefit of resistance for females might allow (1) females to optimize mate quality, or (2) to avoid costs incurred during guarding. However, it has not been fully investigated which benefits actually improve female fitness. Here we investigated female resistance, temporal dynamics of intersexual conflict during reproduction, and the effect of male size and male mating frequency on female fecundity in the marine isopod, Cleantiella isopus to examine the relative importance of the two mechanisms mentioned before. Females resisted even after they had become receptive. Females which mated with small males showed lower fecundity than the ones with large males, and small males were frequently unable to form pairs. These results suggest that female resistance of C. isopus against males can function as a way to optimize mate quality.

Affiliations: 1: aLaboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, Minato 3-1-1, Hakodate, Hokkaido 041-8611, Japan ; 2: bFisheries Sciences Center, The Hokkaido University Museum, Minato 3-1-1, Hakodate, Hokkaido 041-8611, Japan

*Corresponding author’s e-mail address:

Full text loading...


Data & Media loading...

1. Alcock J. (1994). "Postinsemination associations between males and females in insects: the mate-guarding hypothesis". — Annu. Rev. Entomol. Vol 39: 1-21. [Crossref]
2. Andersson M.B. (1994). Sexual selection. — Princeton University Press, Princeton, NJ.
3. Arnqvist G. (1989). "Sexual selection in a water strider: the function, mechanism of selection and heritability of a male grasping apparatus". — Oikos Vol 56: 344-350. [Crossref]
4. Arnqvist G., Rowe L. (2005). Sexual conflict. — Princeton University Press, Princeton, NJ. [Crossref]
5. Cothran R.D. (2004). "Precopulatory mate guarding affects predation risk in two freshwater amphipod species". — Anim. Behav. Vol 68: 1133-1138. [Crossref]
6. Cothran R.D. (2008). "Direct and indirect fitness consequences of female choice in a crustacean". — Evolution Vol 62: 1666-1675. [Crossref]
7. Goshima S., Koga T., Murai M. (1996). "Mate acceptance and guarding by male fiddler crabs Uca tetragonon (Herbst)". — J. Exp. Mar. Biol. Ecol. Vol 196: 131-143. [Crossref]
8. Goshima S., Minouchi S., Yoshino K., Wada S. (2006). "Size assortative mating by the hermit crab Pagurus filholi (Decapoda: Anomura: Paguridae)". — In: Biology of Anomura II. Crustacean research special number 6 ( Asakura A., ed.). Carcinological Society of Japan, Tokyo, p.  87-94.
9. Healy B., O’Neill M. (1984). "The life cycle and population dynamics of Idotea pelagica and I. granulosa (Isopoda: Valvifera) in south-east Ireland". — J. Mar. Biol. Ass. UK Vol 64: 21-33. [Crossref]
10. Hørlyck V. (1973). "Seasonal and diel variation in the rhythmicity of Idotea baltica (Pallas) and Idotea granulosa Rathke". — Ophelia Vol 12: 117-127. [Crossref]
11. Johnson W.S., Stevens M., Watling L. (2001). "Reproduction and development of marine peracaridans". — Adv. Mar. Biol. Vol 39: 105-260. [Crossref]
12. Jormalainen V. (1998). "Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict". — Q. Rev. Biol. Vol 73: 275-304. [Crossref]
13. Jormalainen V. (2007). "Mating strategies in isopods: from mate monopolization to conflicts". — In: Evolutionary ecology of social and sexual systems: crustaceans as model organisms ( Duffy J.E., Thiel M., eds). Oxford University Press, Oxford, p.  167-190. [Crossref]
14. Jormalainen V., Shuster S.M. (1999). "Female reproductive cycle and sexual conflict over precopulatory mate guarding in Thermosphaeroma (Crustacea, Isopoda)". — Ethology Vol 105: 233-246. [Crossref]
15. Jormalainen V., Tuomi J. (1989). "Sexual differences in habitat selection and activity of the colour polymorphic isopod Idotea baltica". — Anim. Behav. Vol 38: 576-585. [Crossref]
16. Jormalainen V., Tuomi J., Yamamura N. (1994). "Intersexual conflict over precopula duration in mate guarding Crustacea". — Behav. Process. Vol 32: 265-283. [Crossref]
17. Jormalainen V., Merilaita S., Tuomi J. (1995). "Differential predation on sexes affects colour polymorphism of the isopod Idotea baltica (Pallas)". — Biol. J. Linn. Soc. Vol 55: 45-68. [Crossref]
18. Jormalainen V., Merilaita S., Härdling R. (2000). "Dynamics of intersexual conflict over precopulatory mate guarding in two populations of the isopod Idotea baltica". — Anim. Behav. Vol 60: 85-93. [Crossref]
19. Jormalainen V., Merilaita S., Riihimäki J. (2001). "Costs of intersexual conflict in the isopod Idotea baltica". — J. Evol. Biol. Vol 14: 763-772. [Crossref]
20. Lemaître J.F., Rigaud T., Cornet S., Bollache L. (2009). "Sperm depletion, male mating behaviour and reproductive ‘time-out’ in Gammarus pulex (Crustacea, Amphipoda)". — Anim. Behav. Vol 77: 49-54. [Crossref]
21. Longo G., Musmeci R., Privitera R., Sottile L. (1998). "Ultrastructural organization of seminal receptacle and sperm storage in Porcellio laevis Latreille (Crustacea: Isopoda Oniscidea)". — Tissue Cell Vol 30: 464-474. [Crossref]
22. Nunomura N. (1995). "Isopoda". — In: Guide to seashore animals of Japan with color pictures and keys 2 ( Nishimura S., ed.). Hoikusha, Osaka, p.  205-233.
23. Nunomura N. (2011). "Crustaceans No. 2 (Isopoda)". — Special Publication of the Toyama Science Museum Vol 24: 1-133 (in Japanese).
24. Okamura S., Goshima S. (2010). "Indirect female choice mediated by sex pheromones in the hermit crab Pagurus filholi". — J. Ethol. Vol 28: 323-329.
25. Parker G.A. (1970). "Sperm competition and its evolutionary consequences in the insects". — Biol. Rev. Vol 45: 525-567. [Crossref]
26. Parker G.A. (1974). "Courtship persistence and female-guarding as male time investment strategies". — Behaviour Vol 48: 157-184. [Crossref]
27. Parker G.A. (1979). "Sexual selection and reproductive competition in insects". — In: Sexual selection and sexual conflict ( Blum M.S., Blum N.A., eds). Academic Press, San Diego, CA, p.  123-166.
28. Ridley M. (1983). The explanation of organic diversity: the comparative method and adaptations for mating. — Clarendon Press, Oxford.
29. Ridley M., Thompson D.J. (1979). "Size and mating in Asellus aquaticus (Crustacea: Isopoda)". — Z. Tierpsychol. Vol 51: 380-397. [Crossref]
30. Rowe L. (1994). "The costs of mating and mate choice in water striders". — Anim. Behav. Vol 48: 1049-1056. [Crossref]
31. Salemaa H. (1979). "Ecology of Idotea species (Isopoda) in the northern Baltic". — Ophelia Vol 18: 133-150. [Crossref]
32. Sato T., Goshima S. (2006). "Impacts of male-only fishing and sperm limitation in manipulated populations of an unfished crab, Hapalogaster dentata". — Mar. Ecol. Prog. Ser. Vol 313: 193-204. [Crossref]
33. Sato T., Goshima S. (2007a). "Effects of risk of sperm competition, female size, and male size on number of ejaculated sperm in the stone crab Hapalogaster dentata". — J. Crust. Biol. Vol 27: 570-575. [Crossref]
34. Sato T., Goshima S. (2007b). "Female choice in response to risk of sperm limitation by the stone crab, Hapalogaster dentata". — Anim. Behav. Vol 73: 331-338. [Crossref]
35. Sato T., Ashidate M., Wada S., Goshima S. (2005). "Effects of male mating frequency and male size on ejaculate size and reproductive success of female spiny king crab Paralithodes brevipes". — Mar. Ecol. Prog. Ser. Vol 296: 251-262. [Crossref]
36. Sato T., Ashidate M., Jinbo T., Goshima S. (2007). "Does male-only fishing influence reproductive success of the female spiny king crab, Paralithodes brevipes?" — Can. J. Fish. Aquat. Sci. Vol 64: 735-742. [Crossref]
37. Sheader M. (1977). "The breeding biology of Idotea pelagica (Isopoda: Valvifera) with notes on the occurrence and biology of its parasite Clypeoniscus hanseni (Isopoda: Epicaridea)". — J. Mar. Biol. Ass. UK Vol 57: 659-674. [Crossref]
38. Sparkes T.C., Keogh D.P., Haskins K.E. (2000). "Female resistance and male preference in a stream-dwelling isopod: effects of female molt characteristics". — Behav. Ecol. Sociobiol. Vol 47: 145-155. [Crossref]
39. Sparkes T.C., Keogh D.P., Orsburn T.H. (2002). "Female resistance and mating outcomes in a stream-dwelling isopod: effects of male energy reserves and mating history". — Behaviour Vol 139: 875-896. [Crossref]
40. Suzuki S., Ziegler A. (2005). "Structural investigation of the female genitalia and sperm-storage sites in the terrestrial isopod Armadillidium vulgare (Crustacea, Isopoda)". — Arthrop. Struct. Dev. Vol 34: 441-454. [Crossref]
41. Takahashi T., Goshima S. (2012). "The growth, reproduction and body color pattern of Cleantiella isopus (Isopoda: Valvifera) in Hakodate Bay, Japan". — Crust. Res. Vol 41: 1-10. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation