Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

A comparison between two ways to measure minimum frequency and an experimental test of vocal plasticity in red-winged blackbirds in response to noise

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

We examined whether red-winged blackbirds modulate their vocalizations in response to experimental highway noise, alternating between ambient-control and noise-playback periods. Our measures of song duration were shorter, and with a lower value of freq5% (a measure of energy distribution), during noise-playback; however, we interpret these results as noise-induced artefacts. This apparent lack of vocal plasticity should be taken cautiously because we had a small sample size and most birds produced only one song type: song type-related vocal plasticity was unlikely to be found. We found no evidence of a shift in minimum frequency with noise when this was measured with a threshold method on power spectra, but it seemed to increase when measured by eye from spectrograms. Our results suggest that the by-eye practice can lead to bias, which is problematic as several previous studies have used this procedure. Use of the threshold method, over the by-eye practice, is encouraged.

Affiliations: 1: Department of Evolution and Ecology, University of California, Davis, CA, USA

*Corresponding author’s current address: Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala Carretera Tlaxcala-Puebla Km 1.5 C.P. 90062, México, e-mail:

Full text loading...


Data & Media loading...

1. Bermúdez-Cuamatzin E., Ríos-Chelén A.A., Gil D., Macías Garcia C. (2011). "Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird". — Biol. Lett. Vol 7: 36-38.
2. Brumm H., Slabbekoorn H. (2005). "Acoustic communication in noise". — Adv. Stud. Behav. Vol 35: 151-209.
3. Brumm H., Slater P.J.B. (2006). "Ambient noise, motor fatigue, and serial redundancy in chaffinch song". — Behav. Ecol. Sociobiol. Vol 60: 475-481.
4. Brumm H., Zollinger S.A. (2011). "The evolution of the Lombard effect: 100 years of psychoacoustic research". — Behaviour Vol 148: 1173-1198.
5. Brumm H., Zollinger S.A. (2013). "Avian vocal production in noise". — In: Animal communication and noise ( Brumm H., ed.). Animal signals and communication 2. Springer, Berlin, p.  187-227.
6. Cardoso G.C., Atwell J.W. (2011). "On the relation between loudness and the increased song frequency of urban birds". — Anim. Behav. Vol 82: 831-836.
7. Cardoso G.C., Atwell J.W. (2012). "On amplitude and frequency in birdsong: a reply to Zollinger et al." — Anim. Behav. Vol 84: e10-e15.
8. Cartwright L.A., Taylor D.R., Wilson D.R., Chow-Fraser P. (2014). "Urban noise affects song structure and daily patterns of song production in red-winged blackbirds (Agelaius phoeniceus)". — Urban Ecosyst. Vol 17: 561-572.
9. Catchpole C.K., Slater P.J.B. (2008). Bird song. Biological themes and variations, 2nd edn.Cambridge University Press, Cambridge.
10. Diaz M., Parra A., Gallardo C. (2011). "Serins respond to anthropogenic noise by increasing vocal activity". — Behav. Ecol. Vol 22: 332-336.
11. Francis C.D., Ortega C.P., Cruz A. (2011). "Different behavioural responses to anthropogenic noise by two closely related passerine birds". — Biol. Lett. Vol 7: 850-852.
12. Fuller R.A., Warren P.H., Gaston K.J. (2007). "Daytime noise predicts nocturnal singing in urban robins". — Biol. Lett. Vol 3: 368-370.
13. Gil D., Brumm H. (2014). "Acoustic communication in the urban environment: patterns, mechanisms, and potential consequences of avian song adjustments". — In: Avian urban ecology ( Gil D., Brumm H., eds). Oxford University Press, Oxford, p.  69-83.
14. Grace M.K., Anderson R.C. (2015). "No frequency shift in the “D” notes of Carolina chickadee calls in response to traffic noise". — Behav. Ecol. Sociobiol. Vol 69: 253-263.
15. Halfwerk W., Slabbekoorn H. (2009). "A behavioural mechanism explaining noise-dependent frequency use in urban birdsong". — Anim. Behav. Vol 78: 1301-1307.
16. Hanna D., Blouin-Demers G., Wilson D.R., Mennill D.J. (2011). "Anthropogenic noise affects song structure in redwinged blackbirds (Agelaius phoeniceus)". — J. Exp. Biol. Vol 214: 3549-3556.
17. Hansen P. (1979). "Vocal learning: its role in adapting sound structures to long-distance propagation, and a hypothesis on its evolution". — Anim. Behav. Vol 27: 1270-1271.
18. Kroodsma D.E. (1982). "Learning and the ontogeny of sound signals in birds". — In: Acoustic communication in birds ( Kroodsma D.E., Miller E.H., Ouellet H., eds). Academic Press, New York, NY, p.  1-23.
19. Lengagne T., Aubin T., Lauga J., Jouventin P. (1999). "How do king penguins (Aptenodytes patagonicus) apply the mathematical theory of information to communicate in windy conditions?" — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 266: 1623-1628.
20. Lengagne T., Slater P.J.B. (2002). "The effects of rain on acoustic communication: tawny owls have good reason for calling less in wet weather". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 269: 2121-2125.
21. Leonard M.L., Horn A.G. (2005). "Ambient noise and the design of begging signals". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 272: 651-656.
22. Leonard M.L., Horn A.G. (2008). "Does ambient noise affect growth and begging call structure in nestling birds?" — Behav. Ecol. Vol 19: 502-507.
23. Luther D., Baptista L. (2010). "Urban noise and the cultural evolution of bird songs". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 277: 469-473.
24. Luther D., Derryberry E.P. (2012). "Birdsongs keep pace with city life: changes in song over time in an urban songbird affects communication". — Anim. Behav. Vol 83: 1059-1066.
25. Marler P. (2004). "Bird calls: a cornucopia for communication". — In: Nature’s music: the science of birdsong ( Marler P., Slabbekoorn H., eds). Elsevier Academic Press, San Diego, CA, p.  132-177.
26. Partecke J., Gwinner E. (2007). "Increased sedentariness in European blackbirds following urbanization: a consequence of local adaptation?" — Ecology Vol 88: 882-890.
27. Partecke J., Van’t Hof T., Gwinner E. (2004). "Differences in the timing of reproduction between urban and forest European blackbirds (Turdus merula): result of phenotypic flexibility or genetic differences?" — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 271: 1995-2001.
28. Partecke J., Gwinner E., Bensch S. (2006). "Is urbanisation of European blackbirds (Turdus merula) associated with genetic differentiation?" — J. Ornithol. Vol 147: 549-552.
29. Patricelli G.L., Blickley J.L. (2006). "Avian communication in urban noise: causes and consequences of vocal adjustment". — Auk Vol 123: 639-649.[639:ACIUNC]2.0.CO;2
30. Peters S., Derryberry E.P., Nowicki S. (2012). "Songbirds learn songs least degraded by environmental transmission". — Biol. Lett. Vol 8: 736-739.
31. Podos J. (1997). "A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae)". — Evolution Vol 51: 537-551.
32. Pohl N.U., Leadbeater E., Slabbekoorn H., Klump G.M., Langemann U. (2012). "Great tits in urban noise benefit from high frequencies in song detection and discrimination". — Anim. Behav. Vol 83: 711-721.
33. Pohl N.U., Slabbekoorn H., Neubauer H., Heil P., Klump G.M., Langemann U. (2013). "Why longer song elements are easier to detect: threshold level-duration functions in the great tit and comparison with human data". — J. Comp. Physiol. A Vol 199: 239-252.
34. Potvin D.A., Parris K.M., Mulder R.A. (2011). "Geographically pervasive effects of urban noise on frequency and syllable rate of songs and calls in silvereyes (Zosterops lateralis)". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 278: 2464-2469.
35. Potvin D.A., Parris K.M., Mulder R.A. (2013a). "Limited genetic differentiation between acoustically divergent populations of urban and rural silvereyes (Zosterops lateralis)". — Evol. Ecol. Vol 27: 381-391.
36. Potvin D.A., Mulder R.A. (2013b). "Immediate, independent adjustment of call pitch and amplitude in response to varying background noise by silvereyes (Zosterops lateralis)". — Behav. Ecol. Vol 24: 1363-1368.
37. Riebel K., Slater P.J.B. (1998). "Male chaffinches (Fringilla coelebs) can copy calls from a tape tutor". — J. Ornithol. Vol 139: 353-355.
38. Ríos-Chelén A.A. (2009). "Bird song: the interplay between urban noise and sexual selection". — Oecol. Bras. Vol 13: 153-164.
39. Ríos-Chelén A.A., Gavin L., Patricelli G.L. (2015). "Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds". — Behav. Ecol. Sociobiol. Vol 69: 1139-1159.
40. Ríos-Chelén A.A., Quirós-Guerrero E., Gil D., Macías Garcia C. (2013). "Dealing with urban noise: vermilion flycatchers sing longer songs in noisier territories". — Behav. Ecol. Sociobiol. Vol 67: 145-152.
41. Ríos-Chelén A.A., Salaberria C., Barbosa I., Macías Garcia C., Gil D. (2012). "The learning advantage: bird species that learn their song show a tighter adjustment of song to noisy environments than those that do not learn". — J. Evol. Biol. Vol 25: 2171-2180.
42. Sewall K.B. (2009). "Limited adult vocal learning maintains call dialects but permits pair distinctive calls in red crossbills". — Anim. Behav. Vol 77: 1303-1311.
43. Sewall K.B., Kelsey T.R., Hahn T.P. (2004). "Discrete variants of evening grosbeak flight calls". — Condor Vol 106: 161-165.
44. Slabbekoorn H. (2013). "Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds". — Anim. Behav. Vol 85: 1089-1099.
45. Zollinger S.A., Podos J., Nemeth E., Goller F., Brumm H. (2012). "On the relationship between, and measurement of, amplitude and frequency in bird song". — Anim. Behav. Vol 84: e1-e9.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation