Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Experimental evidence that high humidity is an essential cue for web building in Pasilobus spiders

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Spiders in the subfamily Cyrtarachninae, including bolas spiders, are moth specialists, and it has been suggested that these spiders initiate web-weaving under high humidity. Here we used Pasilobus hupingensis to experimentally test whether Cyrtarachninae spiders build webs exclusively under high humidity. The results showed that humidity, as well as temperature and prey feeding history, affected web-building probability, but humidity had a much stronger effect. Moreover, spiders never constructed webs at under <70% humidity. We suggest that a mechanical property in sticky materials derived from moth specialization; namely, unusually high, yet rapidly degrading stickiness, is likely to have promoted the evolution of plastic foraging behaviour that varies with humidity.

Affiliations: 1: Laboratory of Biodiversity Science, School of Agriculture & Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan

*Corresponding author’s e-mail address:

Full text loading...


Data & Media loading...

1. Albuquerque G.S., Tauber M.J., Tauber C.A. (1997). "Life-history adaptations and reproductive costs associated with specialization in predacious insects". — J. Anim. Ecol. Vol 66: 307-317. [Crossref]
2. Baba Y.G., Kusahara M., Maezono Y., Miyashita T. (2014). "Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne". — Naturwissenschaften Vol 101: 587-593. [Crossref]
3. Barnard C.J. (1984). Producers and scroungers: strategies of exploitation and parasitism. — Croom Helm, Beckenham. [Crossref]
4. Beck J., Ballesteros-Mejia L., Buchmann C.M., Dengler J., Fritz S.A., Gruber B., Hof C., Jansen F., Knapp S., Kreft H., Schneider A.-K., Winter M., Dormann C.F. (2012). "What’s on the horizon for macroecology?" — Ecography Vol 35: 673-683. [Crossref]
5. Birkhofer K., Wolters V. (2012). "The global relationship between climate, net primary production and the diet of spiders". — Global Ecol. Biogeogr. Vol 21: 100-108. [Crossref]
6. Cartan C.K., Miyashita T. (2000). "Extraordinary web and silk properties of Cyrtarachne (Araneae, Araneidae): a possible link between orbwebs and bolas". — Biol. J. Linn. Soc. Lond. Vol 71: 219-235. [Crossref]
7. Craig C.L., Bernard G.D., Coddington J.A. (1994). "Evolutionary shifts in the spectral properties of spider silks". — Evolution Vol 48: 287-296. [Crossref]
8. Eberhard W.G. (1980). "The natural history and behaviour of the bolas spider Mastophora dizzydeani sp. n. (Araneidae)". — Psyche Vol 87: 143-169. [Crossref]
9. Elettroa H., Neukircha S., Vollrath F., Antkowiak A. (2016). "In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties". — Proc. Natl. Acad. Sci. USA Vol 113: 6143-6147. [Crossref]
10. Futuyma D.J. (2001). "Ecological specialization and generalization". — In: Evolutionary ecology: concepts and case studies ( Fox C.W., Roff D.A., Fairbairn D.J., eds). Oxford University Press, Oxford, p.  177-189.
11. Konuma J., Chiba S. (2007). "Trade-offs between force and fit: extreme morphologies associated with feeding behavior in carabid beetles". — Am. Nat. Vol 170: 90-100. [Crossref]
12. Miyashita T., Sakamaki Y., Shinkai A. (2001). "Evidence against moth attraction by Cyrtarachne, a genus related to bolas spiders". — Acta Arachnol. Vol 50: 1-4. [Crossref]
13. Nentwig N. (1982). "Why do only certain insects escape from a spider’s web?" — Oecologia. Vol 53: 412-417. [Crossref]
14. Opell B.D., Schwend H.S. (2008). "Persistent stickiness of viscous capture threads produced by araneoid orb-weaving spiders". — J. Exp. Zool. Vol 309: 11-16.
15. Opell B.D., Karinshak S.E., Sigler M.A. (2011). "Humidity affects the extensibility of an orb-weaving spider’s viscous thread droplets". — J. Exp. Biol. Vol 214: 2988-2993. [Crossref]
16. Opell B.D., Karinshak S.E., Sigler M.A. (2013). "Environmental response and adaptation of glycoprotein glue within the droplets of viscous prey capture threads from araneoid spider orb-webs". — J. Exp. Biol. Vol 216: 3023-3034. [Crossref]
17. Pasquet A., Leborgne R., Lubin Y. (1999). "Previous foraging success influences web building in the spider Stegodyphus lineatus (Eresidae)". — Behav. Ecol. Vol 10: 115-121. [Crossref]
18. Pekár S., Coddington J.A., Blackledge T.A. (2012a). "Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets". — Evolution Vol 66: 776-806. [Crossref]
19. Pekár S., Šmerda J., Hrušková H., Šedo O., Muster C., Cardoso P., Zdráhal Z., Korenko S., Bureš P., Líznarová E., Sentenská L. (2012b). "Prey-race drives differentiation of biotypes in ant-eating spiders". — J. Anim. Ecol. Vol 81: 838-848. [Crossref]
20. Rana J.S., Dixon A.F.G., Jarošík V. (2002). "Costs and benefits of prey specialization in a generalist insect predator". — J. Anim. Ecol. Vol 71: 15-22. [Crossref]
21. Robinson M.H., Robinson B. (1975). "Evolution beyond the orb web: the web of the araneid spider Pasilobus sp., its structure, operation and construction". — Zool. J. Linn. Soc. Vol 56: 301-314. [Crossref]
22. Sherman P.M. (1994). "The orb-web: an energetic and behavioural estimator of a spider’s dynamic foraging and reproductive strategies". — Anim. Behav. Vol 48: 19-34. [Crossref]
23. Stowe M.K. (1986). "Prey specialization in the Araneidae". — In: Webs, behavior, and evolution ( Shear W.A., ed.). Stanford University Press, Stanford, CA.
24. Tanikawa A., Shinkai A., Miyashita T. (2014). "Molecular phylogeny of moth-specialized spider sub-family Cyrtarachninae, which includes bolas spiders". — Zool. Sci. Vol 31: 716-720. [Crossref]
25. Venner S., Pasquet A., Leborgne R. (2000). "Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience". — Anim. Behav. Vol 59: 603-611. [Crossref]
26. Wise D.H. (1993). Spiders in ecological webs. — Cambridge University Press, Cambridge. [Crossref]
27. World Spider Catalog (2017). World Spider Catalog. — Natural History Museum Bern, Bern, available online at, version 18.0.
28. Yeargan K.V. (1994). "Biology of bolas spiders". — Annu. Rev. Entomol. Vol 39: 81-99. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation