Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The role of abiotic and biotic cues in burrow habitat selection by juvenile crayfish

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Environmental cues contain critical information for individuals while searching for mates and suitable habitat. Crayfish have well-developed chemosensory abilities for detecting environmental cues in water; much less is known about these abilities on land. The Devil crayfish (Cambarus diogenes) is a burrowing crayfish often found in dense floodplain colonies as adults. Juveniles however are released in surface water and must navigate overland to burrow. Previous work demonstrates juveniles use cues from conspecific adults, and to a lesser extent, soil cues, for burrow site selection. Using mesocosms, we build on this by examining burrowing cues associated with (1) congeneric adults, (2) excavated burrow material and (3) other juveniles. In contrast to conspecific adults, cues provided by congeneric adults did not override cues associated with soil type. Similarly, juveniles burrowed closer to conspecific adult burrow mounds than to congeneric and human-built mounds. Juveniles also showed significant grouping behaviour in the absence of all other cues. These results suggest juvenile crayfish integrate multiple terrestrial cues for burrow site selection.

Affiliations: 1: aChrist School, 500 Christ School Road, Arden, NC 28704, USA ; 2: bSchool of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA ; 3: cDepartment of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA

*Corresponding author’s e-mail address:

Full text loading...


Data & Media loading...

1. Abbott C. (1884). "Are the “chimneys” of burrowing crayfish designed?" — Am. Nat. Vol 17: 1157-1158.
2. Abramoff M., Magalhaes P., Ram S. (2004). "Image processing with ImageJ". — Biophoton. Int. Vol 117: 36-42.
3. Adams S. (2007). "Direct and indirect effects of channel catfish (Ictalurus punctatus) on native crayfishes (Cambaridae) in experimental tanks". — Am. Midl. Nat. Vol 158: 85-96. [Crossref]
4. Avens L. (2004). "Navigation and seasonal migratory orientation in juvenile sea turtles". — J. Exp. Biol. Vol 207: 1771-1778. [Crossref]
5. Basil J., Sandeman D. (2000). "Crayfish (Cherax destructor) uses tactile cues to detect and learn topographical changes in their environment". — Ethology Vol 106: 247-259. [Crossref]
6. Bergman G., Donner K.O. (1964). "An analysis of the spring migration of the common scoter and the long-tailed duck in southern Finland". — Acta Zool. Fenn. Vol 105: 1-62.
7. Berrill M., Chenoweth B. (1982). "The burrowing ability of nonburrowing crayfish". — Am. Midl. Nat. Vol 108: 199-201. [Crossref]
8. Berry F., Breithaupt T. (2010). "To signal or not to signal? Chemical communication by urine-borne signals mirrors sexual conflict in crayfish". — BMC Biol. Vol 8: 25. DOI:10.1186/1741-7007-8-25. [Crossref]
9. Berven K. (1990). "Factors affecting population fluctuations in larval and adult stages of the Wood Frog (Rana sylvatica)". — Ecology Vol 71: 1599-1608. [Crossref]
10. Bouchard R.W. (1978). "Taxonomy, ecology and phylogeny of the subgenus Depressicambarus, with the description of a new species from Florida and redescriptions of Cambarus graysoni, Cambarus latimanus, and Cambarus striatus (Decapoda: Cambaridae)". — Bull. Alabama Mus. Nat. Hist. Vol 3: 27-60.
11. Breithaupt T., Eger P. (2002). "Urine makes the difference chemical communication in fighting crayfish made visible". — J. Exp. Biol. Vol 205: 1221-1231.
12. Bühlmann C., Hansson B., Knaden M. (2012). "Path integration controls nest-plume following in desert ants". — Curr. Biol. Vol 22: 645-649. [Crossref]
13. Bühlmann C., Cheng K., Wehner R. (2011). "Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments". — J. Exp. Biol. Vol 214: 2845-2853. [Crossref]
14. Butler D. (2002). "The environmental impact of crayfish biopedoturbation on a floodplain: Roanoke River, North Carolina Coastal Plain, USA". — Landform Analysis Vol 3: 35-40.
15. Butler M., MacDiarmid A., Booth J. (1999). "The cause and consequence of ontogenetic changes in social aggregation in New Zealand spiny lobsters". — Mar. Ecol. Progr. Ser. Vol 188: 179-191. [Crossref]
16. Cade W. (1981). "Field cricket spacing and the phonotaxis of crickets and parasitoid flies to clumped and isolated cricket songs". — Z. Tierpsychol. Vol 55: 365-375. [Crossref]
17. Clark P., Evans F. (1954). "Distance to nearest neighbour as a measure of spatial relationships in populations". — Ecology Vol 35: 445-453. [Crossref]
18. Codling E., Pitchford J., Simpson S. (2007). "Group navigation and the “many-wrongs principle”: in models of animal movement". — Ecology Vol 88: 1864-1870. [Crossref]
19. Corotto F., O’Brien M. (2002). "Chemosensory stimuli for the walking legs of the crayfish Procambarus clarkii". — J. Chem. Ecol. Vol 28: 1117-1130. [Crossref]
20. Creed R., Reed J. (2004). "Ecosystem engineering by crayfish in a headwater stream community". — J. North Am. Benthol. Soc. Vol 23: 224-236. [Crossref]
21. Crook J. (1960). "Studies on the social behaviour of Quelea q. quelea (Linn) in French West Africa". — Behaviour Vol 16: 1-54. [Crossref]
22. Dalosto M.M., Palaoro A., Costa J., Santos S. (2013). "Aggressiveness and life underground: the case of burrowing crayfish". — Behaviour Vol 150: 3-22. [Crossref]
23. DiStefano R., Magoulick D., Imhoff E., Larson E. (2009). "Imperiled crayfishes use hyporheic zone during seasonal drying of an intermittent stream". — J. North Am. Benthol. Soc. Vol 28: 142-152. [Crossref]
24. Dobson A., Poole J. (1998). "Conspecific aggregation and conservation biology". — In: Behavioural ecology and conservation biology ( Caro T., ed.). Oxford University Press, Oxford, p.  193-208.
25. Dolan T., Butler M. (2006). "The adaptive value of aggregation among juvenile Caribbean spiny lobster: an evaluation using individual-based modeling". — J. Crust. Biol. Vol 26: 565-578. [Crossref]
26. Dunham P., Oh J. (1992). "Chemical sex discrimination in the crayfish Procambarus clarkii: role of antennules". — J. Chem. Ecol. Vol 18: 2363-2371. [Crossref]
27. Englund G., Krupa J. (2000). "Habitat use by crayfish in stream pools: influence of predators, depth and body size". — Freshw. Biol. Vol 43: 75-83. [Crossref]
28. Fero K., Moore P. (2008). "Social spacing of crayfish in natural habitats: what role does dominance play?" — Behav. Ecol. Sociobiol. Vol 62: 1119-1125. [Crossref]
29. Fero K., Simon J., Jourdie V., Moore P. (2007). "Consequences of social dominance on crayfish resource use". — Behaviour Vol 144: 61-82. [Crossref]
30. Figler M.H., Twum M., Finkelstein J.E., Peeke H.V.S. (1995). "Maternal aggression in Red Swamp crayfish (Procambarus clarkii, Girard): the relation between reproductive status and outcome of aggressive encounters with male and female conspecifics". — Behaviour Vol 132: 107-125. [Crossref]
31. Garvey J., Stein F., Thomas H. (1994). "Assessing how fish predation and interspecific prey competition influence a crayfish assemblage". — Ecology Vol 75: 532-547. [Crossref]
32. Grow L., Merchant H. (1980). "The burrow habitat of the crayfish, Cambarus diogenes diogenes (Girard)". — Am. Midl. Nat. Vol 103: 231-237. [Crossref]
33. Grow L. (1981). "Burrowing behaviour in the crayfish, Cambarus diogenes diogenes (Girard)". — Anim. Behav. Vol 29: 351-356. [Crossref]
34. Grow L. (1982). "Burrowing/soil-texture relationships in the Crayfish, Cambarus Diogenes Diogenes Girard (Decapoda, Astacidea)". — Crustaceana Vol 42: 150-157. [Crossref]
35. Grunbaum D. (1998). "Schooling as a strategy for taxis in a noisy environment". — Evol. Ecol. Vol 12: 503-522. [Crossref]
36. Guiasu R.C., Saleh N., Mozel E., Dunham D.W. (2005). "Low aggression in juvenile burrowing crayfish, Fallicambarus fodiens (Cottle, 1863) (Decapoda, Cambaridae)". — Crustaceana Vol 78: 421-428. [Crossref]
37. Gydemo R., Westin L., Nissling A. (1990). "Predation on larvae of the noble crayfish, Astacus astacus L". — Aquaculture Vol 86: 155-161. [Crossref]
38. Hamilton W. (1971). "Geometry for the selfish herd". — J. Theor. Biol. Vol 31: 295-311. [Crossref]
39. Hamr P., Richardson A.M.M. (1994). "Life history of Parastacoides tasmanicus tasmanicus Clark, a burrowing freshwater crayfish from south-western Tasmania". — Austr. J. Mar. Freshw. Res. Vol 45: 455-470. [Crossref]
40. Hancock P., Milner-Gulland E., Keeling M. (2006). "Modelling the many-wrongs principle: the navigational advantages of aggregation in nomadic foragers". — J. Theor. Biol. Vol 240: 302-310. [Crossref]
41. Heard S., Richardson J. (1995). "Shredder-collector facilitation in stream detrital food webs: is there enough evidence?" — Oikos Vol 72: 359-366. [Crossref]
42. Helms B., Budnick W., Pecora P., Skipper J., Kosnicki E., Feminella J., Stoeckel J. (2013a). "The influence of soil type, congeneric cues, and floodplain connectivity on the local distribution of the devil crayfish (Cambarus diogenes Girard)". — Freshw. Sci. Vol 32: 1333-1344. [Crossref]
43. Helms B., Figiel C., Rivera J., Stoeckel J., Stanton G., Keller T. (2013b). "Life-history observations, environmental associations, and soil preferences of the Piedmont Blue Burrower (Cambarus [Depressicambarus] harti) Hobbs". — Southeast. Nat. Vol 12: 143-160. [Crossref]
44. Helms B., Creed R. (2005). "The effects of 2 coexisting crayfish on an Appalachian river community". — J. North Am. Benthol. Soc. Vol 24: 113-122. [Crossref]
45. Hobbs H. Jr. (1981). "The crayfishes of Georgia". — Smithson. Contrib. Zool. Vol 318: 1-549. DOI:10.5479/si.00810282.318. [Crossref]
46. Hölldobler B. (1974). "Home range orientation and territoriality in harvesting ants". — Proc. Natl Acad. Sci. USA Vol 71: 3274-3277. [Crossref]
47. Jensen G.C., Armstrong D.A. (1991). "Intertidal zonation among congeners: factors regulating distribution of porcelain crabs Petrolisthes spp. (Anomura: Porcellanidae)". — Mar. Ecol. Progr. Ser. Vol 73: 47-60. [Crossref]
48. Kamran M., Moore P. (2015). "Comparative homing behaviors in two species of crayfish, Fallicambarus fodiens and Orconectes rusticus". — Ethology Vol 121: 775-784. [Crossref]
49. Keller T., Tomba A., Moore P. (2001). "Orientation in complex chemical landscapes: spatial arrangement of chemical sources influences crayfish food-finding efficiency in artificial streams". — Limnol. Oceanogr. Vol 46: 238-247. [Crossref]
50. Knaden M., Graham P. (2016). "The sensory ecology of ant navigation: from natural environments to neural mechanisms". — Annu. Rev. Entomol. Vol 61: 63-76. [Crossref]
51. Kushlan J. (1986). "Responses of wading birds to seasonally fluctuating water levels: strategies and their limits". — Colonial Waterbirds Vol 9: 155-162. [Crossref]
52. Levi T., Barki A., Hulata G., Karplus I. (1999). "Mother-offspring relationships in the red-claw crayfish Cherax quadricarinatus". — J. Crust. Biol. Vol 19: 477-484. [Crossref]
53. Little E. (1975). "Chemical communication in maternal behavior of crayfish". — Nature Vol 255: 400-401. [Crossref]
54. Lohmann K., Ernst D. (2014). "The geomagnetic sense of crustaceans and its use in orientation and navigation". — In: Crustacean nervous systems and their control of behavior ( Derby C.D., Thiel M., eds). Oxford University Press, New York, NY, p.  321-336.
55. Loughman Z., Welsh S., Simon T. (2012). "Occupancy rates of primary burrowing crayfish in natural and disturbed large river bottomlands". — J. Crust. Biol. Vol 32: 557-564. [Crossref]
56. Mathews L. (2011). "Mother–offspring recognition and kin-preferential behaviour in the crayfish Orconectes limosus". — Behaviour Vol 148: 71-87. [Crossref]
57. Menzel R., Geiger K., Joerges J., Müller U., Chittka L. (1998). "Bees travel novel homeward routes by integrating separately acquired vector memories". — Anim. Behav. Vol 55: 139-152. [Crossref]
58. Murdoch W. (1994). "Population regulation in theory and practice". — Ecology Vol 75: 271-287. [Crossref]
59. Norrocky M.J. (1991). "Observations on the ecology, reproduction and growth of the burrowing crayfish Fallicambarus (Creaserinus) fodiens (Decapoda: Cambaridae) in north-central Ohio". — Am. Midl. Nat. Vol 125: 75-86. [Crossref]
60. Nyström P., Brönmark C., Graneli W. (1996). "Patterns in benthic food webs: a role for omnivorous crayfish?" — Freshw. Biol. Vol 36: 631-646. [Crossref]
61. Palaoro A.V., del Valle E., Thiel M. (2016). "Life history patterns are correlated with predictable fluctuations in highly seasonal environments of semi-terrestrial burrowing crayfish". — Hydrobiologia Vol 767: 51-63. [Crossref]
62. Pflieger W., Dryden B. (1996). The crayfishes of Missouri. — Missouri Department of Conservation, Jefferson City, MO.
63. Punzalan D., Guiaşu R., Belchior D., Dunham D. (2001). "Discrimination of conspecific-built chimneys from human-built ones by the burrowing crayfish, Fallicambarus fodiens (Decapoda, Cambaridae)". — Invert. Biol. Vol 120: 58-66. [Crossref]
64. R Development Core Team (2016). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna. Available online at
65. Rasa E., Anne O. (1995). "Ecological factors influencing burrow location, group size, and mortality in a nocturnal fossorial Kalahari detritivore, Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae)". — J. Arid Environm. Vol 29: 353-365. DOI:10.1016/S0140-1963(05)80114-4. [Crossref]
66. Richardson A.M.M. (2007). "Behavioral ecology of semiterrestrial crayfish". — In: Evolutionary ecology of social and sexual systems — crustaceans as model organisms ( Duffy J.E., Thiel M., eds). Oxford University Press, Oxford, p.  319-338. [Crossref]
67. Ritz D., Foster E., Swadling K. (2001). "Benefits of swarming: mysids in larger swarms save energy". — JMBA — J. Mar. Biol. Ass. UK Vol 81: 543-544. DOI:10.1017/S0025315401004210. [Crossref]
68. Rodenhouse N., Sherry T., Holmes R. (1997). "Site-dependent regulation of population size: a new synthesis". — Ecology Vol 78: 2025-2042.
69. Schmidt B.R., Hödl W., Schaub M. (2012). "From metamorphosis to maturity in complex life cycles: equal performance of different juvenile life history pathways". — Ecology Vol 93: 657-667. [Crossref]
70. Simons A. (2004). "Many wrongs: the advantage of group navigation". — Trends Ecol. Evol. Vol 19: 453-455. [Crossref]
71. Statzner B., Fievet E., Champagne J., Morel R., Herouin E. (2000). "Crayfish as geomorphic agents and ecosystem engineers: biological behavior affects sand and gravel erosion in experimental streams". — Limnol. Oceanogr. Vol 45: 1030-1040. [Crossref]
72. Stein R. (1977). "Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish". — Ecology: 1237-1253. [Crossref]
73. Stoeckel J., Helms B., Cash E. (2011). "Evaluation of a crayfish burrowing chamber design with simulated groundwater flow". — J. Crust. Biol. Vol 31: 50-58. [Crossref]
74. Taylor C., Schuster G.A., Cooper J.E., Thoma R.F. (2007). "A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness". — Fisheries Vol 32: 372-389. [Crossref]
75. Thorp J., Ammerman K. (1978). "Chemical communication and agonism in the crayfish Procambarus a. acutus". — Am. Midl. Nat. Vol 100: 471-474. [Crossref]
76. Trepanier T., Dunham D. (1999). "Burrowing and chimney building by juvenile burrowing crayfish Fallicambarus fodiens (Cottle, 1863) (Decapoda, Cambaridae)". — Crustaceana Vol 72: 435-442.
77. Walls M., Layne J. (2009). "Fiddler crabs accurately measure two-dimensional distance over three-dimensional terrain". — J. Exp. Biol. Vol 212: 3236-3240. [Crossref]
78. Wehner R. (1987). ‘"Matched filters’ — neural models of the external world". — J. Comp. Physiol. A Vol 161: 511-531. [Crossref]
79. Wehner R., Michel B., Antonsen P. (1996). "Visual navigation in insects: coupling of egocentric and geocentric information". — J. Exp. Biol. Vol 199: 129-140.
80. Wilbur H.M. (1980). "Complex life cycles". — Annu. Rev. Ecol. Syst. Vol 11: 67-93. [Crossref]
81. Wolf M., Voigt R., Moore P. (2004). "Spatial arrangement of odor sources modifies the temporal aspects of crayfish search strategies". — J. Chem. Ecol. Vol 30: 501-517. [Crossref]
82. Zeil J., Hemmi J. (2006). "The visual ecology of fiddler crabs". — J. Comp. Physiol. A Vol 192: 1-25. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation