Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Larval developmental temperature and ambient temperature affect copulation duration in a seed beetle

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

The effects of temperature on cellular, systemic and whole-organism processes can be short-term, acting within seconds or minutes of a temperature change, or long-term, acting across ontogenetic stages to affect an organism’s morphology, physiology and behavioural phenotype. Here we examine the effect of larval development temperature on adult copulatory behaviour in the bruchid beetle, Callosobruchus maculatus. As predicted by temperature’s kinetic effects, copulation duration was longest at the lowest ambient temperature. However, where ambient temperature was fixed and developmental temperature experimentally varied, males reared at the highest temperature were least likely to engage in copulation, whilst those reared at the lowest temperature copulated for longer. Previous research has shown males reared at cooler temperatures inseminate fewer sperm. Thus, in this species longer copulations are associated with reduced sperm transfer. We argue that knowledge of preceding ontogenetic conditions will help to elucidate the causes of variation in copulatory behaviour.

Affiliations: 1: aUniversity of East Anglia, School of Biological Sciences, Norwich Research Park, Norwich, UK ; 2: bSchool of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK

*Corresponding author’s e-mail address:

Full text loading...


Data & Media loading...

1. Abram P.K., Biovin G., Moiroux J., Brodeur J. (2017). "Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity". — Biol. Rev. Vol 92: 1859-1876. [Crossref]
2. Angilletta M.J. (2009). Thermal adaptation: a theoretical and empirical synthesis. — Oxford University Press, Oxford. [Crossref]
3. Berger D., Bauerfeind S.S., Blanckenhorn W.U., Schäfer M.A. (2011). "High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ". — Evolution Vol 65: 2830-2842. [Crossref]
4. Blanckenhorn W.U. (2000). "Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria". — Evol. Ecol. Vol 14: 627-643. [Crossref]
5. Blanckenhorn W.U., Hellriegel B. (2002). "Against Bergmann’s rule: fly sperm size increases with temperature". — Ecol. Lett. Vol 5: 7-10. [Crossref]
6. Blanckenhorn W.U., Henseler C. (2005). "Temperature-dependent ovariole and testis maturation in the yellow dung fly". — Ent. Exp. App. Vol 116: 159-165. [Crossref]
7. Breckles R.D., Neff B.D. (2013). "The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm". — J. Exp. Biol. Vol 216: 2658-2664. [Crossref]
8. Cook D.F. (1994). "Influence of temperature on copula duration and mating propensity in Lucilia cuprina Wiedemann (Diptera: Calliphoridae)". — Aust. Ent. Vol 33: 5-8. [Crossref]
9. David J.R., Araripe L.O., Chakir M., Legout H., Lemos B., Petavy G., Rohmer C., Joly D., Moreteau B. (2005). "Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations". — J. Evol. Biol. Vol 18: 838-846. [Crossref]
10. Deeming D.C. (2004). "Post-hatching phenotypic effects of incubation in reptiles". — In: Reptilian incubation: behaviour and environment ( Deeming D.C., ed.). Nottingham University Press, Nottingham, p.  229-252.
11. Deeming D.C., Ferguson M.W.J. (1991). "Physiological effects of incubation temperature on embryonic development in reptiles and birds". — In: Egg incubation: its effects on embryonic development in birds and reptiles ( Deeming D.C., Ferguson M.W.J., eds). Cambridge University Press, Cambridge, p.  147-171. [Crossref]
12. Delisle J., Bernier-Cardou M., Laroche G. (2016). "Reproductive performance of the hemlock looper, Lambdina fiscellaria, as a function of temperature and population origin". — Entomol. Exp. Appl. Vol 161: 219-231. [Crossref]
13. Dougherty L.R., Simmons L.W. (2017). "X-ray micro-CT scanning reveals temporal separation of male harm and female kicking during traumatic mating in seed beetles". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 284: 20170550.
14. Eady P.E. (1994). "Intraspecific variation in sperm precedence in Callosobruchus maculatus". — Ecol. Entomol. Vol 16: 45-53. [Crossref]
15. Eady P.E. (1995). "Why do male Callosobruchus maculatus beetles inseminate so many sperm?" — Behav. Ecol. Sociobiol. Vol 36: 25-32. [Crossref]
16. Eady P.E., Brown D.V. (2017). "Male–female interactions drive the (un)repeatability of copula duration in an insect". — Open Sci. Vol 4. DOI:10.1098/rsos.160962.
17. Eberhard W.G. (1996). Female control: sexual selection by cryptic female choice. — Princeton University Press, Princeton, N.J.
18. Fox C.W., Hickman D.L., Raleigh E.L., Mousseau T.A. (1995). "Paternal investment in a seed beetle (Coleoptera: Bruchidae): influence of male size, age, and mating history". — Ann. Entomol. Soc. Am. Vol 88: 100-103. [Crossref]
19. Gage M.J.G. (1995). "Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 261: 25-30. [Crossref]
20. Gering R.L. (1953). "Structure and function of the genitalia in some American agelenid spiders". — Smithsonian Misc. Coll. Vol 121: 1-84.
21. Germain J.F., Monge J.P., Huignard J. (1987). "Development of two bruchid populations (Bruchidius atrolineatus (Pic) and Callosobruchus maculatus (Fab.)) infesting stored cowpea (Vigna unguiculata Wapl) pods in Niger". — J. Stored Prod. Res. Vol 23: 157-162. [Crossref]
22. Gillooly J.F., Brown J.H., West G.B., Savage V.M., Charnov E.L. (2001). "Effects of size and temperature on metabolic rate". — Science Vol 293: 2248-2251. [Crossref]
23. Horton D.R., Lewis T.M., Hinojosa T. (2002). "Copulation duration in three species of Anthocoris (Heteroptera: Anthocoridae) at different temperatures and effects on insemination and ovarian development". — Pan-Pacif. Entomol. Vol 78: 43-55.
24. Huey R.B., Stevenson R.D. (1979). "Integrating thermal physiology and ecology of ectotherms: a discussion of approaches". — Integr. Comp. Biol. Vol 19: 357-366.
25. Jørgensen K.T., Sørensen J.G., Bundgaard J. (2006). "Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males". — J. Therm. Biol. Vol 31: 280-286. [Crossref]
26. Katsuki M., Miyatake T. (2009). "Effects of temperature on mating duration, sperm transfer and remating frequency in Callosobruchus chinensis". — J. Insect Physiol. Vol 55: 112-119. [Crossref]
27. Kelly C.D., Jennions M.D. (2011). "Sexual selection and sperm quantity: meta-analyses of strategic ejaculation". — Biol. Rev. Vol 86: 863-884. [Crossref]
28. Kingsolver J.G., Izem R., Ragland G.J. (2004). "Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves". — Integr. Comp. Biol. Vol 44: 450-460. [Crossref]
29. Kvist J., Wheat C.W., Kallioniemi E., Saastamoinen M., Hanski I., Frilander M.J. (2013). "Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits". — Mol. Ecol. Vol 22: 602-619. [Crossref]
30. Matsubara S., Deeming D.C., Wilkinson A. (2017). "Cold-blooded cognition: new directions in reptile cognition". — Curr. Opin. Behav. Sci. Vol 16: 126-130. [Crossref]
31. Minoretti N., Stoll P., Baur B. (2013). "Heritability of sperm length and adult shell size in the land snail Arianta arbustorum (Linnaeus, 1758)". — J. Mollusc. Stud. Vol 79: 218-224. [Crossref]
32. Nguyen T.T.P., Amano H. (2010). "Temperature at immature and adult stages differentially affects mating duration and egg production of Neoseiulus californicus females mated once (Acari: Phytoseiidae)". — J. Asia-Pacific Entomol. Vol 13: 65-68. [Crossref]
33. Nijhout H.F. (2003). "The control of body size in insects". — Dev. Biol. Vol 261: 1-9. [Crossref]
34. Nijhout H.F., Davidowitz G., Roff D.A. (2006). "A quantitative analysis of the mechanism that controls body size in Manduca sexta". — J. Biol. Vol 5: 16.
35. Parker G.A. (1970a). "Sperm competition and its evolutionary consequences in insects". — Biol. Rev. Vol 45: 525-567. [Crossref]
36. Parker G.A. (1970b). "Sperm competition and its evolutionary effect on copula duration in the fly Scatophaga stercoraria". — J. Insect Physiol. Vol 16: 1301-1328. [Crossref]
37. Pavković-Lučić S., Kekić V. (2013). "Developmental temperature, body size and male mating success in fruit flies, Drosophila melanogaster (Diptera: Drosophilidae)". — Eur. J. Entomol. Vol 110: 31-37. [Crossref]
38. Penttilä A., Slade E.M., Simojoki A., Riutta T., Minkkinen K., Roslin T. (2013). "Quantifying beetle-mediated effects on gas fluxes from dung pats". — PLoS ONE Vol 8: e71454. [Crossref]
39. Porcelli D., Gaston K.J., Butlin R.K., Snook R.R. (2017). "Local adaptation of reproductive performance during thermal stress". — J. Evol. Biol. Vol 30: 422-429. [Crossref]
40. Prudic K.L., Jeon C., Cao H., Monteiro A. (2011). "Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation". — Science Vol 331: 73-75. [Crossref]
41. Purchase C.F., Butts I.A., Alonso-Fernandez A., Trippel E.A. (2010). "Thermal reaction norms in sperm performance of Atlantic cod (Gadus morhua)". — Can. J. Fish. Aquat. Sci. Vol 67: 498-510. [Crossref]
42. R Core Team (2015). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna.
43. Rohmer C., David J.R., Moreteau B., Joly D. (2004). "Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome". — J. Exp. Biol. Vol 207: 2735-2743. [Crossref]
44. Rovner J.S. (1971). "Mechanisms controlling copulatory behaviour in Wolf Spiders (Araneae: Lycosidae)". — Psyche: J. Entomol. Vol 78: 150-165. [Crossref]
45. Savalli U.M., Fox C.W. (1999). "The effect of male mating history on paternal investment, fecundity and female remating in the seed beetle Callosobruchus maculatus". — Funct. Ecol. Vol 13: 169-177. [Crossref]
46. Simmons L.W. (2001). Sperm competition and its evolutionary consequences in insects. — Princeton University Press, Princeton, NJ.
47. Stillwell R.C., Wallin W.G., Hitchcock L.J., Fox C.W. (2007). "Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle". — Oecologia Vol 153: 309-321. [Crossref]
48. Stockley P., Seal N.J. (2001). "Plasticity in reproductive effort of male dung flies (Scatophaga stercoraria) as a response to larval density". — Funct. Ecol. Vol 15: 96-102. [Crossref]
49. Taylor M.L., Price T.A.R., Skeats A., Wedell N. (2017). "Temperature can shape a cline in polyandry, but only genetic variation can sustain it over time". — Behav. Ecol. Vol 27: 462-469. [Crossref]
50. van Lieshout E., McNamara K.B., Simmons L.W. (2014). "Why do female Callosobruchus maculatus kick their mates?" — PloS ONE Vol 9: e95747.
51. Vasudeva R., Deeming D.C., Eady P.E. (2014). "Developmental temperature affects the expression of ejaculatory traits and the outcome of sperm competition in Callosobruchus maculatus". — J. Evol. Biol. Vol 27: 1811-1818. [Crossref]
52. Wang D.-M., Yu B.-J., Nie F., Xu L., Fan T.-S., Roman J., Ji R. (2016). "Observation on mating behaviours of Calliptamus italicus (Orthoptera: Acrididae)". — J. Environ. Entomol. Vol 38: 918-923.
53. Wang S., Tan X.L., Guo X.J., Zhang F. (2013). "Effect of temperature and photoperiod on the development, reproduction, and predation of the predatory ladybird Cheilomenes sexmaculata (Coleoptera: Coccinellidae)". — J. Econ. Entomol. Vol 106: 2621-2629. [Crossref]
54. Westerman E., Monteiro A. (2016). "Rearing temperature influences adult response to changes in mating status". — PLoS ONE Vol 11: e0146546. [Crossref]
55. Wickham H., Chang W. (2015). ggplot2: an implementation of the grammar of graphics. — Available online at
56. Yamane T., Miyatake T. (2005). "Intra-specific variation in strategic ejaculation according to level of polyandry in Callosobruchus chinensis". — J. Insect Physiol. Vol 51: 1240-1243. [Crossref]
57. Zhang G.-H., Li Y.-Y., Zang K.-J., Wang J.-J., Liu Y.-Q., Liu H. (2016). "Effects of heat stress on copulation, fecundity and longevity of newly-emerged adults of the predatory mite, Neoseiulus barkeri (Acari: Phytoseiidae)". — Syst. Appl. Acar. Vol 21: 295-306.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation