Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The impact of early-life stress on the expression of HPA-associated genes in the adult murine brain

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Early life is an important period for the development of the nervous system and for the programming of behavioural phenotypes in adulthood. In our study, two types of early-life stress were used: prolonged separation of pups from their mothers (for 3 h/day, maternal separation (MS)) and brief separation (for 15 min/day, handling (HD)). We analysed the effects of early-life stress on behaviour and the expression of HPA-associated genes in the hypothalamus, hippocampus, and frontal cortex of male mice. Adult mice in the MS group demonstrated reduced locomotor activity and deficiencies in spatial long-term memory, while the HD showed no significant changes. Additionally, early-life MS resulted in reduced hippocampal Crhr1 mRNA, increased MR/GR mRNA in the hippocampus and hypothalamus. Both groups, HD and MS, showed increased Avp mRNA in the hypothalamus. Thus, prolonged maternal separation but not brief leads to adverse behavioural changes and influences the expression of HPA-associated genes in a brain region-specific manner.

Affiliations: 1: aLaboratory of Gene Expression Regulation, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia ; 2: bNovosibirsk State Medical University, Novosibirsk, Russia ; 3: cNovosibirsk State University, Novosibirsk, Russia

*Corresponding author’s e-mail address:

Full text loading...


Data & Media loading...

1. Aisa B., Tordera R., Lasheras B., Del Rio J., Ramirez M.J. (2007). "Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats". — Psychoneuroendocrinology Vol 32: 256-266. [Crossref]
2. Akatsu S., Ishikawa C., Takemura K., Ohtani A., Shiga T. (2015). "Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice". — Neurosci. Res. Vol 101: 15-23. [Crossref]
3. Avishai-Eliner S., Eghbal-Ahmadi M., Tabachnik E., Brunson K.L., Baram T.Z. (2001). "Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA". — Endocrinology Vol 142: 89-97. [Crossref]
4. Bailoo J.D., Jordan R.L., Garza X.J., Tyler A.N. (2013). "Brief and long periods of maternal separation affect maternal behavior and offspring behavioral development in C57BL/6 mice". — Dev. Psychobiol. Vol 56: 674-685. [Crossref]
5. Barbosa Neto J.B., Tiba P.A., Faturi C.B., de Castro-Neto E.F., da Graca Naffah-Mazacoratti M., de Jesus Mari J., de Mello M.F., Suchecki D. (2012). "Stress during development alters anxiety-like behavior and hippocampal neurotransmission in male and female rats". — Neuropharmacology Vol 62: 518-526. [Crossref]
6. Berardelli R., Karamouzis I., D’Angelo V., Zichi C., Fussotto B., Giordano R., Ghigo E., Arvat E. (2013). "Role of mineralocorticoid receptors on the hypothalamus–pituitary–adrenal axis in humans". — Endocrine Vol 43: 51-58. [Crossref]
7. Berger S., Wolfer D.P., Selbach O., Alter H., Erdmann G., Reichardt H.M., Chepkova A.N., Welzl H., Haas H.L., Lipp H.P., Schutz G. (2006). "Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity". — Proc. Natl. Acad. Sci. USA Vol 103: 195-200. [Crossref]
8. Bilbo S.D., Newsum N.J., Sprunger D.B., Watkins L.R., Rudy J.W., Maier S.F. (2007). "Differential effects of neonatal handling on early life infection-induced alterations in cognition in adulthood". — Brain Behav. Immun. Vol 21: 332-342. [Crossref]
9. Bondar N.P., Lepeshko A.A., Reshetnikov V.V. (2018). "Effects of early-life stress on social and anxiety-like behaviors in adult mice: sex-specific effects". — Behav. Neurol. Vol 2018: 1538931. [Crossref]
10. Bondar N.P., Merkulova T.I. (2016). "Brain-derived neurotrophic factor and early-life stress: multifaceted interplay". — J. Biosci. Vol 41: 751-758. [Crossref]
11. de Kloet E.R., Joels M., Holsboer F. (2005). "Stress and the brain: from adaptation to disease". — Nat. Rev. Neurosci. Vol 6: 463-475. [Crossref]
12. De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joels M. (1998). "Brain corticosteroid receptor balance in health and disease". — Endocr. Rev. Vol 19: 269-301.
13. Drouin J., Sun Y.L., Chamberland M., Gauthier Y., De Lean A., Nemer M., Schmidt T.J. (1993). "Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene". — EMBO J. Vol 12: 145-156.
14. Faravelli C., Lo Sauro C., Lelli L., Pietrini F., Lazzeretti L., Godini L., Benni L., Fioravanti G., Talamba G.A., Castellini G., Ricca V. (2012). "The role of life events and HPA axis in anxiety disorders: a review". — Curr. Pharm. Des. Vol 18: 5663-5674. [Crossref]
15. Fenoglio K.A., Brunson K.L., Avishai-Eliner S., Stone B.A., Kapadia B.J., Baram T.Z. (2005). "Enduring, handling-evoked enhancement of hippocampal memory function and glucocorticoid receptor expression involves activation of the corticotropin-releasing factor type 1 receptor". — Endocrinology Vol 146: 4090-4096. [Crossref]
16. Fox J.H., Lowry C.A. (2013). "Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior". — Front. Neurosci. Vol 7: 169. [Crossref]
17. Francis D., Diorio J., LaPlante P., Weaver S., Seckl J.R., Meaney M.J. (1996). "The role of early environmental events in regulating neuroendocrine development. Moms, pups, stress, and glucocorticoid receptors". — Ann. NY Acad. Sci. Vol 794: 136-152. [Crossref]
18. Franklin T.B., Saab B.J., Mansuy I.M. (2012). "Neural mechanisms of stress resilience and vulnerability". — Neuron Vol 75: 747-761. [Crossref]
19. Frankola K.A., Flora A.L., Torres A.K., Grissom E.M., Overstreet S., Dohanich G.P. (2010). "Effects of early rearing conditions on cognitive performance in prepubescent male and female rats". — Neurobiol. Learn. Mem. Vol 94: 91-99. [Crossref]
20. Galigniana M.D., Erlejman A.G., Monte M., Gomez-Sanchez C., Piwien-Pilipuk G. (2010). "The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events". — Mol. Cell Biol. Vol 30: 1285-1298. [Crossref]
21. Gershon A., Sudheimer K., Tirouvanziam R., Williams L.M., O’Hara R. (2013). "The long-term impact of early adversity on late-life psychiatric disorders". — Curr. Psychol. Rep. Vol 15: 352.
22. Guidotti G., Calabrese F., Anacker C., Racagni G., Pariante C.M., Riva M.A. (2013). "Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment". — Neuropsychopharmacology Vol 38: 616-627. [Crossref]
23. Harris A.P., Holmes M.C., de Kloet E.R., Chapman K.E., Seckl J.R. (2013). "Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour". — Psychoneuroendocrinology Vol 38: 648-658. [Crossref]
24. Harrison F.E., Hosseini A.H., McDonald M.P. (2009). "Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks". — Behav. Brain Res. Vol 198: 247-251. [Crossref]
25. Hartmann J., Wagner K.V., Dedic N., Marinescu D., Scharf S.H., Wang X.D., Deussing J.M., Hausch F., Rein T., Schmidt U., Holsboer F., Muller M.B., Schmidt M.V. (2012). "Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice". — Psychoneuroendocrinology Vol 37: 2009-2021. [Crossref]
26. Hedges D.W., Woon F.L. (2011). "Early-life stress and cognitive outcome". — Psychopharmacology Vol 214: 121-130. [Crossref]
27. Heim C., Plotsky P.M., Nemeroff C.B. (2004). "Importance of studying the contributions of early adverse experience to neurobiological findings in depression". — Neuropsychopharmacology Vol 29: 641-648. [Crossref]
28. Hunter A.L., Minnis H., Wilson P. (2011). "Altered stress responses in children exposed to early adversity: a systematic review of salivary cortisol studies". — Stress Vol 14: 614-626. [Crossref]
29. Huot R.L., Plotsky P.M., Lenox R.H., McNamara R.K. (2002). "Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats". — Brain Res. Vol 950: 52-63. [Crossref]
30. Joels M., Karst H., DeRijk R., de Kloet E.R. (2008). "The coming out of the brain mineralocorticoid receptor". — Trends Neurosci. Vol 31: 1-7. [Crossref]
31. Kaffman A., Meaney M.J. (2007). "Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights". — J. Child Psychol. Psychiat. Vol 48: 224-244. [Crossref]
32. Kalinichev M., Easterling K.W., Holtzman S.G. (2002). "Early neonatal experience of Long–Evans rats results in long-lasting changes in reactivity to a novel environment and morphine-induced sensitization and tolerance". — Neuropsychopharmacology Vol 27: 518-533.
33. Kosten T.A., Kim J.J., Lee H.J. (2012). "Early life manipulations alter learning and memory in rats". — Neurosci. Biobehav. Rev. Vol 36: 1985-2006. [Crossref]
34. Krugers H.J., Arp J.M., Xiong H., Kanatsou S., Lesuis S.L., Korosi A., Joels M., Lucassen P.J. (2017). "Early life adversity: lasting consequences for emotional learning". — Neurobiol. Stress Vol 6: 14-21. [Crossref]
35. Ladd C.O., Huot R.L., Thrivikraman K.V., Nemeroff C.B., Plotsky P.M. (2004). "Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo–pituitary–adrenal axis following neonatal maternal separation". — Biol. Psychiat. Vol 55: 367-375. [Crossref]
36. Ladd C.O., Thrivikraman K.V., Huot R.L., Plotsky P.M. (2005). "Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates". — Psychoneuroendocrinology Vol 30: 520-533. [Crossref]
37. Landgraf R., Wigger A. (2002). "High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety". — Behav. Genet. Vol 32: 301-314. [Crossref]
38. Levine S. (2000). "Influence of psychological variables on the activity of the hypothalamic–pituitary–adrenal axis". — Eur. J. Pharmacol. Vol 405: 149-160. [Crossref]
39. Lippmann M., Bress A., Nemeroff C.B., Plotsky P.M., Monteggia L.M. (2007). "Long-term behavioural and molecular alterations associated with maternal separation in rats". — Eur. J. Neurosci. Vol 25: 3091-3098. [Crossref]
40. Luchetti A., Oddi D., Lampis V., Centofante E., Felsani A., Battaglia M., D’Amato F.R. (2015). "Early handling and repeated cross-fostering have opposite effect on mouse emotionality". — Front. Behav. Neurosci. Vol 9: 93. [Crossref]
41. Maccari S., Polese D., Reynaert M.L., Amici T., Morley-Fletcher S., Fagioli F. (2017). "Early-life experiences and the development of adult diseases with a focus on mental illness: the human birth theory". — Neuroscience Vol 342: 232-251. [Crossref]
42. Madruga C., Xavier L.L., Achaval M., Sanvitto G.L., Lucion A.B. (2006). "Early handling, but not maternal separation, decreases emotional responses in two paradigms of fear without changes in mesolimbic dopamine". — Behav. Brain Res. Vol 166: 241-246. [Crossref]
43. Malkoski S.P., Dorin R.I. (1999). "Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene". — Mol. Endocrinol. Vol 13: 1629-1644. [Crossref]
44. Maniam J., Morris M.J. (2010). "Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment". — Psychoneuroendocrinology Vol 35: 717-728. [Crossref]
45. Matsumoto M., Yoshioka M., Togashi H. (2009). "Early postnatal stress and neural circuit underlying emotional regulation". — Adv. Neuropharmacol. Vol 85: 95-107.
46. Meaney M.J. (2010). "Epigenetics and the biological definition of gene × environment interactions". — Child Dev. Vol 81: 41-79. [Crossref]
47. Mehta M., Schmauss C. (2011). "Strain-specific cognitive deficits in adult mice exposed to early life stress". — Behav. Neurosci. Vol 125: 29-36. [Crossref]
48. Merkulov V.M., Merkulova T.I., Bondar N.P. (2017). "Mechanisms of brain glucocorticoid resistance in stress-induced psychopathologies". — Biochemistry Vol 82: 351-365.
49. Millstein R.A., Holmes A. (2007). "Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains". — Neurosci. Biobehav. Rev. Vol 31: 3-17. [Crossref]
50. Moles A., Rizzi R., D’Amato F.R. (2004). "Postnatal stress in mice: does “stressing” the mother have the same effect as “stressing” the pups?" — Dev. Psychobiol. Vol 44: 230-237. [Crossref]
51. Morris R.G.M. (1981). "Spatial localization does not require the presence of local cues". — Learn. Motivat. Vol 12: 239-260. [Crossref]
52. Mueller S.C., Maheu F.S., Dozier M., Peloso E., Mandell D., Leibenluft E., Pine D.S., Ernst M. (2010). "Early-life stress is associated with impairment in cognitive control in adolescence: an fMRI study". — Neuropsychologia Vol 48: 3037-3044. [Crossref]
53. Murgatroyd C., Patchev A.V., Wu Y.H., Micale V., Bockmuhl Y., Fischer D., Holsboer F., Wotjak C.T., Almeida O.F.X., Spengler D. (2010). "Dynamic DNA methylation programs persistent adverse effects of early-life stress". — Nat. Neurosci. Vol 12: 1559-1566. [Crossref]
54. Navailles S., Zimnisky R., Schmauss C. (2010). "Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress". — Dev. Neurosci. Vol 32: 139-148. [Crossref]
55. Nemeroff C.B. (1996). "The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions". — Mol. Psychiatr. Vol 1: 336-342.
56. Odonnell D., Larocque S., Seckl J.R., Meaney M.J. (1994). "Postnatal handling alters glucocorticoid, but not mineralocorticoid messenger-RNA expression in the hippocampus of adult-rats". — Mol. Brain Res. Vol 26: 242-248. [Crossref]
57. Oitzl M.S., de Kloet E.R. (1992). "Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning". — Behav. Neurosci. Vol 106: 62-71. [Crossref]
58. Own L.S., Iqbal R., Patel P.D. (2013). "Maternal separation alters serotonergic and HPA axis gene expression independent of separation duration in mice". — Brain Res. Vol 1515: 29-38. [Crossref]
59. Parfitt D.B., Levin J.K., Saltstein K.P., Klayman A.S., Greer L.M., Helmreich D.L. (2004). "Differential early rearing environments can accentuate or attenuate the responses to stress in male C57BL/6 mice". — Brain Res. Vol 1016: 111-118. [Crossref]
60. Pesonen A.K., Eriksson J.G., Heinonen K., Kajantie E., Tuovinen S., Alastalo H., Henriksson M., Leskinen J., Osmond C., Barker D.J.P., Raikkonen K. (2013). "Cognitive ability and decline after early life stress exposure". — Neurobiol. Aging Vol 34: 1674-1679. [Crossref]
61. Plescia F., Marino R.A., Navarra M., Gambino G., Brancato A., Sardo P., Cannizzaro C. (2014). "Early handling effect on female rat spatial and non-spatial learning and memory". — Behav. Proc. Vol 103: 9-16. [Crossref]
62. Plotsky P.M., Meaney M.J. (1993). "Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats". — Brain Res. Mol. Brain Res. Vol 18: 195-200. [Crossref]
63. Pryce C.R., Feldon J. (2003). "Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms". — Neurosci. Biobehav. Rev. Vol 27: 57-71. [Crossref]
64. Reul J.M.H.M., Gesing A., Droste S., Stec I.S.M., Weber A., Bachmann C., Bilang-Bleuel A., Holsboer F., Linthorst A.C.E. (2000). "The brain mineralocorticoid receptor: greedy for ligand, mysterious in function". — Eur. J. Pharmacol. Vol 405: 235-249. [Crossref]
65. Romeo R.D., Mueller A., Sisti H.M., Ogawa S., McEwen B.S., Brake W.G. (2003). "Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation". — Horm. Behav. Vol 43: 561-567. [Crossref]
66. Roozendaal B., McReynolds J.R., Van der Zee E.A., Lee S., McGaugh J.L., McIntyre C.K. (2009). "Glucocorticoid effects on memory consolidation depend on functional interactions between the medial prefrontal cortex and basolateral amygdala". — J. Neurosci. Vol 29: 14299-14308. [Crossref]
67. Rozeboom A.M., Akil H., Seasholtz A.F. (2007). "Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice". — Proc. Natl. Acad. Sci. USA Vol 104: 4688-4693. [Crossref]
68. Sanchez M.M., Ladd C.O., Plotsky P.M. (2001). "Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models". — Dev. Psychopathol. Vol 13: 419-449. [Crossref]
69. Schmidt M.V., Oitzl M.S., Levine S., de Kloet E.R. (2002). "The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation". — Brain Res. Dev. Brain Res. Vol 139: 39-49. [Crossref]
70. Solas M., Aisa B., Mugueta M.C., Del Rio J., Tordera R.M., Ramirez M.J. (2010). "Interactions between age, stress and insulin on cognition: implications for Alzheimer’s disease". — Neuropsychopharmacology Vol 35: 1664-1673. [Crossref]
71. Struber N., Struber D., Roth G. (2014). "Impact of early adversity on glucocorticoid regulation and later mental disorders". — Neurosci. Biobehav. Rev. Vol 38: 17-37. [Crossref]
72. Takatsuru Y., Koibuchi N. (2015). "Alteration of somatosensory response in adulthood by early life stress". — Front. Mol. Neurosci. Vol 8: 15. [Crossref]
73. Teicher M.H., Samson J.A., Anderson C.M., Ohashi K. (2016). "The effects of childhood maltreatment on brain structure, function and connectivity". — Nat. Rev. Neurosci. Vol 17: 652-666. [Crossref]
74. Tractenberg S.G., Levandowski M.L., de Azeredo L.A., Orso R., Roithmann L.G., Hoffmann E.S., Brenhouse H., Grassi-Oliveira R. (2016). "An overview of maternal separation effects on behavioural outcomes in mice: evidence from a four-stage methodological systematic review". — Neurosci. Biobehav. Rev. Vol 68: 489-503. [Crossref]
75. van der Doelen R.H.A., Calabrese F., Guidotti G., Geenen B., Riva M.A., Kozicz T., Homberg J.R. (2014). "Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5: in the adult rat brain". — Front. Behav. Neurosci. Vol 8: 355.
76. van Gaalen M.M., Stenzel-Poore M.P., Holsboer F., Steckler T. (2002). "Effects of transgenic overproduction of CRH on anxiety-like behaviour". — Eur. J. Neurosci. Vol 15: 2007-2015. [Crossref]
77. Varghese A.K., Verdu E.F., Bercik P., Khan W.I., Blennerhassett P.A., Szechtman H., Collins S.M. (2006). "Antidepressants attenuate increased susceptibility to colitis in a murine model of depression". — Gastroenterology Vol 130: 1743-1753. [Crossref]
78. Veenema A.H., Bredewold R., Neumann I.D. (2007). "Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity". — Psychoneuroendocrinology Vol 32: 437-450. [Crossref]
79. Veenema A.H., Reber S.O., Selch S., Obermeier F., Neumann I.D. (2008). "Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice". — Endocrinology Vol 149: 2727-2736. [Crossref]
80. Vorhees C.V., Williams M.T. (2014). "Assessing spatial learning and memory in rodents". — ILAR J. Vol 55: 310-332. [Crossref]
81. Walker C.D., Scribner K.A., Cascio C.S., Dallman M.F. (1991). "The pituitary-adrenocortical system of neonatal rats is responsive to stress throughout development in a time-dependent and stressor-specific fashion". — Endocrinology Vol 128: 1385-1395. [Crossref]
82. Wigger A., Sanchez M.M., Mathys K.C., Ebner K., Frank E., Liu D., Kresse A., Neumann I.D., Holsboer F., Plotsky P.M., Landgraf R. (2004). "Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin". — Neuropsychopharmacology Vol 29: 1-14. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation