Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Predator recognition of chemical cues in crayfish: diet and experience influence the ability to detect predation threats

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Behaviour

Aquatic prey often alter their morphology, physiology, and/or behaviour when presented with predatory chemical cues which are heavily influenced by the diet of the predator. We tested the roles that diet and prey familiarity with predators play in the ability of prey to recognize predator threats. Odours from two fish, bass and cichlid fed a vegetarian, protein, heterospecific, and a conspecific diet, were collected and presented to virile crayfish in a choice arena. Our results show that crayfish altered their behaviour in the presence of odours containing conspecific, as opposed to heterospecific diets, but only from familiar predators. A reduced anti-predator response was measured with odours from an unfamiliar predator fed conspecific crayfish. Therefore, crayfish may be able to determine different threat levels based on the different dietary cues from a potential predator, but only when the prey have familiarity with the predators.

Affiliations: 1: aLaboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA ; 2: bUniversity of Michigan Biological Station, 9133 Biological Road, Pellston, MI, 49769, USA ; 3: cJ.P. Scott Center for Neuroscience, Mind, and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA

*Corresponding author’s e-mail address: pmoore@bgsu.edu
10.1163/1568539X-00003501
/content/journals/10.1163/1568539x-00003501
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/1568539x-00003501
Loading

Data & Media loading...

1. Acquistapace P., Hazlett B.A., Gherardi F. (2003). "Unsuccessful predation and learning of predator cues by crayfish". — J. Crust. Biol. Vol 23: 364-370. [Crossref]
2. Alexander J.E. Jr., Covich A.P. (1991). "Predator avoidance by the freshwater snail Physella virgate in response to the crayfish Procambarus simulans". — Oecologia Vol 87: 435-442. [Crossref]
3. Atema J. (1996). "Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors". — Biol. Bull. Vol 191: 129-138. [Crossref]
4. Bates D., Maechler M., Bolker B., Walker S. (2015). "Fitting linear mixed-effects models using lme4". — J. Stat. Soft. Vol 67: 1-48. DOI:10.18637/jss.v067.i01.
5. Bergman D.A., Moore P.A. (2003). "Field observations of intraspecific agonistic behavior of two crayfish species, Orconectes rusticus and Orconectes virilis, in different habitats". — Biol. Bull. Vol 205: 26-35. [Crossref]
6. Brönmark C., Miner J.G. (1992). "Predator-induced phenotypical change in body morphology in crucian carp". — Science Vol 258: 1348-1350. [Crossref]
7. Cai F., Wu Z., He N., Wang Z. (2011). "Can native species crucian carp Carassius auratus recognizes the introduced red swamp crayfish Procambarus clarkii?" — Curr. Zool. Vol 57: 330-339. [Crossref]
8. Chivers D.P., Mirza R.S. (2001). "Predator diet cues and the assessment of predation risk by aquatic vertebrates: a review and prospectus". — Chem. Signal. Vol 9: 19-26.
9. Chivers D.P., Wisenden B.D., Smith R.J.F. (1996). "Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet". — Anim. Behav. Vol 52: 315-320. [Crossref]
10. Chivers D.P., Smith R.J.F. (1998). "Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus". — Ecoscience Vol 5: 338-352. [Crossref]
11. Dalesman S., Rundle S.D. (2010). "Cohabitation enhances the avoidance response to heterospecific alarm cues in a freshwater snail". — Anim. Behav. Vol 79: 173-177. [Crossref]
12. Dalesman S., Rundle S.D., Coleman R.A., Cotton P.A. (2006). "Cue association and antipredator behaviour in a pulmonate snail, Lymnaea stagnalis". — Anim. Behav. Vol 71: 789-797. [Crossref]
13. Dalesman S., Rundle S.D., Bilton D.T., Cotton P.A. (2007). "Phylogenetic relatedness and ecological interactions determine antipredator behavior". — Ecology Vol 88: 2462-2467. [Crossref]
14. Dixon D.L., Pratchett M.S., Munday P.L. (2012). "Reef fishes innately distinguish predators based on olfactory cues associated with recent prey items rather than individual species". — Anim. Behav. Vol 84: 45-51. [Crossref]
15. Ferland-Raymond B., Murray D.L. (2008). "Predator diet and prey adaptive responses: can tadpoles distinguish between predators feeding on congeneric vs. conspecific prey?" — Can. J. Zool. Vol 86: 1329-1336. [Crossref]
16. Ferrari M.C., Rive A.C., MacNaughton C.J., Brown G.E., Chivers D.P. (2008). "Fixed vs. random temporal predictability of predation risk: an extension of the risk allocation hypothesis". — Ethology Vol 114: 238-244. [Crossref]
17. Ferrari M.C.O., Sih A., Chivers D.P. (2009). "The paradox of risk allocation: a review and prospectus". — Anim. Behav. Vol 78: 579-585. [Crossref]
18. Ferrari M.C.O., Wisenden B.D., Chivers D.P. (2010). "Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus". — Can. J. Zool. Vol 88: 698-724. [Crossref]
19. Gherardi F., Mavuti K.M., Pacini N., Tricario E., Harper D.M. (2011). "The smell of danger: chemical recognition of fish predators by the invasive crayfish Procambarus clarkii". — Freshw. Biol. Vol 56: 1567-1578. [Crossref]
20. Gonzalo A., López P., Martín J. (2007). "Iberian green frog tadpoles may learn to recognize novel predators from chemical alarm cues of conspecifics". — Anim. Behav. Vol 74: 447-453. [Crossref]
21. Grason E.W. (2017). "Does cohistory constrain information use? Evidence for generalized risk assessment in nonnative prey". — Am. Nat. Vol 189: 213-226. [Crossref]
22. Grostal P., Dicke M. (2000). "Recognising one’s enemies: a functional approach to risk assessment by prey". — Behav. Ecol. Sociobiol. Vol 47: 258-264. [Crossref]
23. Hazlett B.A., Schoolmaster D.R. (1988). "Responses of cambarid crayfish to predator odor". — J. Chem. Ecol. Vol 24: 1757-1770. [Crossref]
24. Hazlett B.A. (2003). "Predator recognition and learned irrelevance in the crayfish Orconectes virilis". — Ethology Vol 109: 765-780. [Crossref]
25. Hill A.M., Sinars D.M., Lodge D.M. (1993). "Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality". — Oecology Vol 94: 303-306. [Crossref]
26. Hothorn T., Bretz F., Westfall P. (2008). "Simultaneous inference in general parametric models". — Biomet. J. Vol 50: 346-363.
27. Jutfelt F., Sundin J., Raby G.D., Krång A., Clark T.D. (2016). "Two-current choice flumes for testing avoidance and preference in aquatic animals". — Methods Ecol. Evol. Vol 8: 379-390. [Crossref]
28. Kats L.B., Dill L.M. (1998). "The scent of death: chemosensory assessment of predation risk by prey animals". — Ecoscience Vol 5: 361-394. [Crossref]
29. Large S.I., Smee D.L. (2010). "Type and nature of cues used by Nucella lapillus to evaluate predation risk". — J. Exp. Mar. Biol. Ecol. Vol 396: 10-17. [Crossref]
30. Lima S.L., Bednekoff P.A. (1999). "Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis". — Am. Nat. Vol 153: 649-659. [Crossref]
31. Lima S.L., Dill L.M. (1990). "Behavioral decisions made under the risk of predation: a review and prospectus". — Can. J. Zool. Vol 68: 619-640. [Crossref]
32. Mach M.E., Bourdeau P.E. (2011). "To flee or not to flee? Risk assessment by a marine snail in multiple cue environments". — J. Exp. Mar. Biol. Ecol. Vol 409: 166-171. [Crossref]
33. Marquis O., Saglio P., Neveu A. (2004). "Effects of predators and conspecific chemical cues on the swimming activity of Rana temporaria and Bufo bufo tadpoles". — Arch. Hydrobiol. Vol 160: 153-170. [Crossref]
34. Mathis A., Smith J.F. (1993). "Fathead minnows, Pimephales promelas, learn to recognize northern pike, Esox lucius, as predators on the basis of chemical stimuli from minnows in the pike’s diet". — Anim. Behav. Vol 46: 645-656. [Crossref]
35. McLennan D.A., Ryan M.J. (1997). "Responses to conspecific and heterospecific olfactory cues in swordtail Xiphophorus cortezi". — Anim. Behav. Vol 54: 1077-1088. [Crossref]
36. Mirza R.S., Chivers D.P., Godin J.G.J. (2001). "Brook charr alevins alter timing of nest emergence in response to chemical cues from fish predators". — J. Chem. Ecol. Vol 27: 1775-1785. [Crossref]
37. Mirza R.S., Ferrari M.C., Kiesecker J.M., Chivers D.P. (2006). "Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition". — Behaviour Vol 143: 877-889. [Crossref]
38. Moore P.A. (2007). "Agonistic behavior in freshwater crayfish: the influence of intrinsic and extrinsic factors on aggressive behavior and dominance". — In: Evolutionary ecology of social and sexual systems: Crustacea as models organisms ( Duffy J.E., Thiel M., eds). Oxford University Press, Oxford, p.  90-114. [Crossref]
39. Murray D.L., Jenkins C.L. (1999). "Predation risk as a function of predator dietary cues in terrestrial salamanders". — Anim. Behav. Vol 57: 33-39. [Crossref]
40. Nunes A.L., Richter-Biox A., Laurila A., Rebelo R. (2012). "Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study". — Oecology Vol 171: 115-127. [Crossref]
41. Peacor K.W., Hazlett B.A. (2006). "A test of temporal variation in risk and food stimuli on behavioral tradeoffs in the rusty crayfish, Orconectes rusticus: risk allocation and stimulus degradation". — Ethology Vol 112: 230-237. [Crossref]
42. Pollock M.S., Chivers D.P., Mirza R.S., Wisenden B.D. (2003). "Fathead minnows, Pimephales promelas, learn to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans". — Environ. Biol. Fish. Vol 66: 313-319. [Crossref]
43. R Core Team (2018). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna.
44. Reynolds J.D. (2011). "A review of ecological interactions between crayfish and fish, indigenous and introduced". — Knowl. Manage. Aquat. Ecosyst. Vol 401: 10.
45. Roberts L.J., de Leaniz C.G. (2011). "Something smells fishy: predator-naive salmon use diet cues, not kairomones, to recognize a sympatric mammalian predator". — Anim. Behav. Vol 82: 619-625. [Crossref]
46. Rosell F., Holtan L.B., Thorsen J.G., Heggenes J. (2013). "Predator-naïve brown trout (Salmo trtutta) show antipredator behaviours to scent from an introduced piscivorous mammalian predator fed conspecifics". — Ethology Vol 119: 303-308. [Crossref]
47. Rundle S.D., Brönmark C. (2001). "Inter- and intraspecific trait compensation of defence mechanisms in freshwater snails". — Proc. Roy. Soc. Lond. B: Biol. Sci. Vol 268: 1463-1468. [Crossref]
48. Scherer A.E., Smee D.L. (2016). "A review of predator diet effects on prey defensive responses". — Chemoecology Vol 26: 83-100. [Crossref]
49. Schoeppner N.M., Relyea R.A. (2005). "Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences". — Ecol. Lett. Vol 8: 505-512. [Crossref]
50. Schoeppner N.M., Relyea R.A. (2009). "Interpreting the smells of predation: how alarm cues and kairomones induce different prey defences". — Funct. Ecol. Vol 23: 1114-1121. [Crossref]
51. Stein R.A., Magnuson J.J. (1976). "Behavioral response of crayfish to a fish predator". — Ecology Vol 57: 751-761. [Crossref]
52. Stenzler D., Atema J. (1977). "Alarm response of the marine mud snail, Nassarius obsoletus: specificity and behavioral priority". — J. Chem. Ecol. Vol 3: 159-171. [Crossref]
53. Sullivan A.M., Picard A.L., Madison D.M. (2005). "To avoid or not to avoid? Factors influencing the discrimination of predator diet cues by a terrestrial salamander". — Anim. Behav. Vol 69: 1425-1433. [Crossref]
54. Turner A.M., Montgomery S.L. (2003). "Spatial and temporal scales of predator avoidance: experiments with fish and snails". — Ecology Vol 84: 616-622. [Crossref]
55. Turner A.M. (2008). "Predator diet and prey behaviour: freshwater snails discriminate among closely related prey in a predator’s diet". — Anim. Behav. Vol 76: 1211-1217. [Crossref]
56. van Oosterhout F., Goitom E., Roessink I., Lürling M. (2014). "Lanthanum from a modified clay used in eutrophication control is bioavailable to the marbled crayfish (Procambarus fallax f. virginalis)". — PLoS ONE Vol 9: e102410. DOI:10.1371/journal.pone.0102410. [Crossref]
57. Weissburg M., Beauvais J. (2015). "The smell of success: the amount of prey consumed by predators determines the strength and range of cascading non-consumptive effects". — PeerJ Vol 3: e1426. DOI:10.7717/peerj.1426. [Crossref]
58. Weissburg M.J., Ferner M.C., Pisut D.P., Smee D.L. (2002). "Ecological consequences of chemically mediated prey perception". — J. Chem. Ecol. Vol 28: 1953-1970. [Crossref]
59. Weissburg M., Smee D.L., Ferner M.C. (2014). "The sensory of nonconsumptive predator effects". — Am. Nat. Vol 184: 141-157. [Crossref]
60. Weissburg M., Poulin R.X., Kubanek J. (2016). "You are what you eat: a metabolomics approach to understanding prey responses to diet-dependent chemical cues by predators". — J. Chem. Ecol. Vol 42: 1037-1046. [Crossref]
61. Werner E.E., Anholt B.R. (1993). "Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity". — Am. Nat. Vol 142: 242-272. [Crossref]
62. Wilson M.L., Webster D.R., Weissburg M.J. (2013). "Spatial and temporal variation in the hydrodynamic landscape in intertidal salt marsh systems". — Limnol. Oceanogr. Fluids Environ. Vol 3: 156-172. [Crossref]
63. Wisenden B.D. (2000). "Olfactory assessment of predation risk in the aquatic environment". — Phil. Trans. Roy. Soc. Lond B: Biol. Sci. Vol 355: 1205-1208. [Crossref]
64. Witte F., Goldschmidt T., Wanink J., van Oijen M., Goudswaard K., Witte-Maas E., Bouton N. (1992). "The destruction of an endemic species flock: quantitative data on the decline of haplochromine cichlids of Lake Victoria". — Environ. Biol. Fish. Vol 34: 1-28. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/1568539x-00003501
Loading

Article metrics loading...

/content/journals/10.1163/1568539x-00003501
2018-06-28
2018-11-15

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Behaviour — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation