Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Fine scale meiofaunal distribution around burrows of ocypodoids (Decapoda, Ocypodoidea) in tidal flat sediments

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Crustaceana

In tidal flat sediments, larger invertebrates often modify the sedimentary environment in a manner that causes smaller animals, such as meiofauna, to become more abundant. In other words, macrofauna can “promote” meiofauna. In summer (August) and autumn (November/early December) 2007, we investigated centimetre-scale horizontal and vertical profiles of total metazoan meiofaunal abundance and community structure around burrows of Uca lactea (De Haan, 1835) (fiddler crabs) and Scopimera globosa (De Haan, 1835) (sand bubbler crabs) on an intertidal sandflat of the Amakusa Islands, western Japan. Meiofaunal community structure changed significantly with sediment depth around burrows of U. lactea in both seasons, whereas vertical differences were less clear for S. globosa. Although no evidence was found that total meiofaunal abundance or the abundances of certain taxonomic groups were positively influenced by burrows of S. globosa, the abundance of nematodes in subsurface sediment around burrows of U. lactea was significantly higher than in controls in autumn. High concentrations of fresh organic matter had not accumulated in the sediment around burrows of either species of crab. Uca lactea, however, made its burrows in significantly finer sediment than did S. globosa. One possibility is that differences in meiofaunal distribution in sediment around the burrows of the two crabs were the result of habitat and behavioural differences between the species.

Affiliations: 1: 1Aitsu Marine Station, Center for Marine Environment Studies, Kumamoto University, 6061 Aitsu, Matsushima, Kami-Amakusa, Kumamoto 861-6102, Japan; 2: 2Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan


Full text loading...


Data & Media loading...

1. Anker A. , Murina G.-V. , Lira C. , Caripe J. A. V. , Palmer A. R. , Jeng M.-S. , 2005. "Macrofauna associated with echiuran burrows: a review with new observations of the innkeeper worm, Ochetostoma erythrogrammonLeuckart and Rüppel, in Venezuela". Zool. Stud., Vol 44: 157- 190.
2. Bell S. S. , Watzin M. C. , Coull B. C. , 1978. "Biogenic structure and its effect on the spatial heterogeneity of meiofauna in a salt marsh". J. Exp. Mar. Biol. Ecol., Vol 35: 99- 107.
3. Clarke K. R. , Warwick R. M. , 2001. Change in marine communities: an approach to statistical analysis and interpretation( 2nd ed.). ( PRIMER-E, Plymouth).
4. Danovaro R. , 2010. Methods for the study of deep-sea sediments, their functioning and biodiversity: 1- 428. ( CRC Press, Boca Raton, FL).
5. DePatra K. D. , Levin L. A. , 1989. "Evidence of the passive deposition of meiofauna into fiddler crab burrows". J. Exp. Mar. Biol. Ecol., Vol 125: 173- 192.
6. Dittmann S. , 1996. "Effects of macrobenthic burrows on infaunal communities in tropical tidal flats". Mar. Ecol. Prog. Ser., Vol 134: 119- 130.
7. Dye A. H. , Lasiak T. A. , 1986. "Microbenthos, meiobenthos and fiddler-crabs — trophic interactions in a tropical mangrove sediment". Mar. Ecol. Prog. Ser., Vol 32: 259- 264.
8. Giere O. , 2009. Meiobenthology( 2nd ed.): 1- 527. ( Springer, Berlin).
9. Gribsholt B. , Kostka J. E. , Kristensen E. , 2003. "Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh". Mar. Ecol. Prog. Ser., Vol 259: 237- 251.
10. Hoffman J. A. , Katz J. , Bertness M. D. , 1984. "Fiddler crab deposit-feeding and meiofaunal abundance in salt marsh habitats". J. Exp. Mar. Biol. Ecol., Vol 82: 161- 174.
11. Itani G. , 2004. "Host specialization in symbiotic animals associated with thalassinidean shrimps in Japan". In: Tamaki A. (ed.), Proceedings of the Symposium on “Ecology of Large Bioturbators in Tidal Flats and Shallow Sublittoral Sediments — From Individual Behavior to their Role as Ecosystem Engineers”: 33- 43. ( Nagasaki University).
12. Kinoshita K. , Wada M. , Kogure K. , Furota T. , 2008. "Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major(Crustacea: Thalassinidea)". Mar. Biol., Vol 153: 277- 283.
13. Koike I. , Mukai H. , 1983. "Oxygen and inorganic nitrogen contents and fluxes in burrows of the shrimps Callianassa japonicaand Upogebia major ". Mar. Ecol. Prog. Ser., Vol 12: 185- 190.
14. Kristensen E. , 2008. "Mangrove crabs as ecosystem engineers; with emphasis on sediment processes". J. Sea Res., Vol 59: 30- 43.
15. Lorenzen C. J. , 1967. "Determination of chlorophyll and pheo-pigments: spectrophotometric equations". Limnol. Oceanogr., Vol 12: 343- 346.
16. Ólafsson E. , 2003. "Do macrofauna structure meiofauna assemblages in marine soft-bottoms? A review of experimental studies". Vie et Milieu, Vol 53: 249- 265.
17. Ólafsson E. , Ndaro S. G. M. , 1997. "Impact of the mangrove crabs Uca annulipesand Dotilla fenestrataon meiobenthos". Mar. Ecol. Prog. Ser., Vol 158: 225- 231.
18. Ono Y. , 1962. "On the habitat preference of ocypodoid crabs I". Memoirs of the Faculty of Science — Kyushu University, Series E, Biology, Vol 3: 143- 163.
19. Otani S. , Kozuki Y. , Yamanaka R. , Sasaoka H. , Ishiyama T. , Okitsu Y. , Sakai H. , Fujiki Y. , 2010. "The role of crab ( Macrophthalmus japonicus) burrows on the organic carbon cycle in an estuarine tidal flat, Japan". Estuarine Coastal Shelf Sci., Vol 86: 434- 440.
20. Powell E. , 1989. "Oxygen, sulfide and diffusion: why thiobiotic meiofauna must be sulfide-insensitive first-order respirers". J. Mar. Res., Vol 47: 887- 932.
21. Reinsel K. A. , 2004. "Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle". J. Exp. Mar. Biol. Ecol., Vol 313: 1- 17.
22. Reise K. , 1981. "High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea". Helgol. Meeresunters., Vol 34: 413- 425.
23. Reise K. , 1985. Tidal flat ecology: 1- 191. ( Springer, Berlin).
24. Reise K. , Ax P. , 1979. "A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist". Mar. Biol., Vol 54: 225- 237.
25. Toothaker L. E. , Chang H. , 1980. "On “The analysis of ranked data derived from completely randomized factorial designs”". J. Educ. Statist., Vol 5: 169- 176.
26. Wada K. , 1983. "Movement of burrow location in Scopimera globosaand Ilyoplax pusillus(Decapoda: Ocypodoidae)". Physiology and Ecology, Japan, Vol 20: 1- 21.
27. Warwick R. M. , Clarke K. R. , Gee J. M. , 1990. "The effect of disturbance by soldier crabs Mictyris platychelesH. Milne Edwards on meiobenthic community structure". J. Exp. Mar. Biol. Ecol., Vol 135: 19- 33.
28. Zar J. H. , 1999. Biostatistical analysis( 4th ed.): 1- 663. ( Prentice-Hall, Englewood Cliffs, NJ).

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Crustaceana — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation