Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Crustacean zooplankton communities in Chiloé Island coastal lakes (42°S, Chile)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Crustaceana

The lakes of Chiloé Island have a high dissolved organic carbon concentration (known as “humic”) and show a connection with brackish water. They also display a high species richness of crustacean zooplankton. The aim of the present study is to characterize the potential factors that explain crustacean species richness in Chiloé Island lakes. To that purpose parameters of the abiotic environment were determined. The results of PCA performed on those data revealed the existence of three lakes with high crustacean species richness that are relatively deep, show high nitrogen concentrations, and are located at relatively high altitude. In contrast, there are two lakes with low species richness, high mineral concentration, and situated at low altitude. One of these lowland lakes gives rise to a river effluent to the sea, and it is connected to the other lake; these observations agree with the results of a performed cluster analysis. Nevertheless, the co-occurrence null model analysis revealed the absence of regulator patterns in species associations, which could be explained to the fact that many of the species occur in most of the lakes. These results are markedly different in comparison to Patagonian lakes of Argentina and Chile that have a low crustacean species number.

Affiliations: 1: 1Laboratorio de Ecología Aplicada y Biodiversidad, Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, casilla 15-D, Temuco, Chile ; 2: 2Núcleo de Estudios Ambientales, UC Temuco, casilla 15-D, Temuco, Chile ; 3: 3Department of Earth and Environmental Sciences, Università Degli Studi di Milano-Bicocca, Milan, Lombardy, Italy

4Corresponding author; e-mail: prios@uct.cl
Loading

Full text loading...

/content/journals/10.1163/15685403-00003766
Loading

Data & Media loading...

1. Anton-Pardo M., Armengol X., 2012. "Effects of salinity and water temporality on zooplankton community in coastal Mediterranean ponds". Est. Coast. Shelf Sci., Vol 114: 93-99. [Crossref]
2. Campos H., 1997. Determinación de la capacidad de carga y balance de fósforo y nitrógeno de los lagos Natri, Cucao, Huillinco, Tepuhueico y Tarahuin. Technical Report Fisheries Research Foundation — Chile, FIP-IT/96-54 Vol. 1 [In Spanish.]
3. De los Ríos-Escalante P., 2016. "Null models for study rotifers and crustacean zooplankton species richness in Chilean Patagonian lakes". Act. Limnol. Bras., Vol 28: e11.
4. Everitt B. S., Hothorn T., 2016. A handbook of statistical analysis using R, 1st edn. Available online at: https://cran.r-project.org/web/packages/HSAUR/HSAUR.pdf (accessed 13 July 2016).
5. Ginatullina E., Atwell L., Saito L., 2017. "Resilence and resistence of zooplankton communities to drought-induced salinity in freshwater and saline lakes of central Asia". J. Arid Env., Vol 144: 1-11. [Crossref]
6. Gotelli N. J., 2000. "Null models of species co-occurrence patterns". Ecology, Vol 81: 2606-2621. [Crossref]
7. Gotelli N. J., Entsminger G. L., 2007. EcoSim: Null models software for ecology. Version 7. Available online at: http://garyentsminger.com/ecosim.htm (Acquired Intelligence & Kesey-Bear, Jericho, VT).
8. Gotelli N. J., Ellison A. M., 2013. EcoSimR 1.00. Available online at: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html.
9. Gutkowska A., Paturej E., Kowalska E., 2012. "Qualitative and quantitative methods for sampling zooplankton in shallow coastal estuaries". Ecohydrol. Ecohydrobiol., Vol 12: 253-263. [Crossref]
10. Hauenstein E., González M., Peña-Cortés F., Muñoz-Pedreros A., 2002. "Clasificación y caracterización de la flora y vegetación de los humedales de la costa de Toltén (IX Región, Chile)". Gayana Bot., Vol 59: 87-100. [Crossref]
11. Hemraj D. A., Hossain M. A., Ye Q., Qin J. G., Leterme S. C., 2017. "Plankton bioindicators of environmental conditions in coastal lagoons". Est. Coast. Shelf Sci., Vol 184: 102-114. [Crossref]
12. Jeppensen E., Lauridsen T. L., Mitchell S. F., Burns C. W., 1997. "Do zooplanktivorous fish structure the zooplankton communities in New Zealand lakes?" New Zealand J. Mar. Freshwat. Res., Vol 31: 163-173. [Crossref]
13. Modenutti B. E., Balseiro E. G., Queimaliños C. P., Añón Suárez D. A., Dieguez M. C., Albariño R. J., 1998. "Structure and dynamics of food webs in Andean lakes". Lakes Reserv. Res. Manag., Vol 3: 179-189. [Crossref]
14. Pratiwi N. T. M., Ardhito A., Wulandari D. Y., Iswantari A., 2016. "Horizontal distribution of zooplankton in Tangerang coastal waters, Indonesia". Proceedia, Env. Sci., Vol 33: 470-477. [Crossref]
15. R Development Core Team, 2009. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna).
16. Schliep K. P., 2011. "Phangorn: phylogenetic analysis in R". Bioinformatics, Vol 27: 592-593. [Crossref]
17. Soto D., De los Rios P., 2006. "Trophic status and conductivity patterns as regulators in daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park". Biologia Bratislava, Vol 61: 541-546. [Crossref]
18. Soto D., Zuñiga L. R., 1991. "Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts". Rev. Chilena Hist. Nat., Vol 64: 569-581.
19. Tiho S., Josens G., 2007. "Co-occurrence of earth worms in urban surroundings: a null model analysis of community structure". Eur. J. Soil Biol., Vol 43: 84-90. [Crossref]
20. Tondoh J. E., 2006. "Seasonal changes in earthworm diversity and community structure in central Côte d’Ivoire". Eur. J. Soil Biol., Vol 42: s334-s340. [Crossref]
21. Villalobos L., Parra O., Grandjean M., Jaque E., Wölfl S., Campos H., 2003. "River basin and limnological study in five humic lakes of the Chiloé Island". Rev. Chilena Hist. Nat., Vol 76: 10-15.
22. Whitman R. L., Nevers M. B., Goodrich M. L., Murphy P. C., Davis B. M., 2004. "Characterization of Lake Michigan coastal lakes using zooplankton assemblages". Ecol. Indic., Vol 4: 277-286. [Crossref]
23. Woelfl S., 2007. "The distribution of large mixotrophic ciliates (Stentor) in deep north Patagonian lakes (Chile): first results". Limnologica, Vol 37: 28-36. [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/15685403-00003766
Loading

Article metrics loading...

/content/journals/10.1163/15685403-00003766
2018-01-10
2018-06-20

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Crustaceana — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation