Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Use of a cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

The susceptibility of overwintering black vine weevil larvae Otiorhynchus sulcatus to a cold-active entomopathogenic nematode, Steinernema kraussei (isolate L137) and a commercial proprietary biopesticide, Steinernema carpocapsae (Exhibit) was assessed on outdoor potted strawberry plants. Nematodes were applied at a range of doses in early winter at a field site located in Warwickshire, England. Three months later, infestation and mortality of vine weevils were assessed. There was a clear dose response observed for S. kraussei applications. Up to 81% of vine weevil control was recorded by this nematode at the highest dose of 60 000 nematodes per pot, whereas treatments with S. carpocapsae caused no significant mortality at the dose rates used. Dissection of vine weevil larvae showed infective juveniles had developed to adults within the host. Recovery of nematodes at the end of the experiment indicated that S. kraussei (L137) was able to survive winter field conditions including prolonged exposure to low temperatures (averaging 2.7°C during the experiment) in contrast to S. carpocapsae which showed poor survival. Of the two extraction methods used, the Baermann funnel technique was found to be more efficient than Galleria mellonella baiting, with up to 44% of the original highest dose of S. kraussei nematodes being recovered by Baermann funnel compared to 8% with G. mellonella at 18°C. These results suggest S. kraussei (L137) has potential as a commercial biocontrol agent against O. sulcatus at low temperatures.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation