Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Development of an efficient PCR-based diagnosis protocol for the identification of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Pine wood wilt disease caused by the pine wood nematode, Bursaphelenchus xylophilus , has been a serious problem in the southern regions of Korea. Efficient diagnosis of B. xylophilus from infected pine wood specimens is critical for the management of this pest. Traditional microscopic examination often results in an erroneous identification because a closely related non-pathogenic species, B. mucronatus, has a great degree of morphological similarity to B. xylophilus. In an attempt to search for reliable molecular markers for the discrimination of these species, we have cloned the 5S rRNA genomic DNA fragments containing both coding and intergenic spacer (IGS) regions from B. xylophilus and B. mucronatus through a homology-probing PCR strategy. Sequence analyses revealed that coding sequences of the 5S rRNA gene from the two species are almost identical (98.3% homology) but that the IGS sequences differ substantially between the species. Based on the IGS sequence differences (69.7% homology), we designed species-specific primer sets and developed a PCR-based diagnosis protocol for the identification and discrimination of the two nematode species on a molecular basis.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation