Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

A molecular diagnostic method for detecting Nacobbus in soil and in potato tubers

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Species of the genus Nacobbus have the potential to reduce yields of major food crops such as potato, sugar beet and tomato in many parts of the world, thus warranting a quarantine effort to avoid their introduction. Molecular studies offer a new method for routine quarantine diagnostics for this nematode that will be faster and more sensitive than previous methods. A primer set was designed from Nacobbus ITS sequences and their specificity confirmed. DNA was extracted from nematodes, soil and potato tubers for use in PCR. Optimised PCR conditions were established and the PCR products were separated on 2% agarose gels, showing that specific ITS primers for the detection of Nacobbus generated a single PCR product, although band size varied slightly between species and soil isolates. The product was generated from DNA extracted from all the Nacobbus samples but not from other nematodes tested (Pratylenchus, Radopholus, Meloidogyne, Globodera, Heterodera). No bands were generated from the uninfested control soil and control tuber DNA samples, thus demonstrating the specificity of the primers. For the first time, Nacobbus was detected in soil and tuber samples using molecular approaches. These results have important applications not only in analysing advisory samples but also in the screening of material for quarantine purposes.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation