Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Fertiliser use efficiency of soybean cultivars infected with Meloidogyne incognita and Pratylenchus penetrans

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

The most appropriate use of fertilisers to offset damage caused by nematode infestations can benefit greatly from determining fertiliser use efficiency (FUE). FUE is defined as increase in host productivity and/or decrease in nematode population density in response to a given fertiliser treatment. This study describes new and integrated approaches to identify FUE in nematode-infected plants. In two consecutive experiments, Heterodera glycines-resistant 'Bryan', susceptible-tolerant 'G88-20092', and susceptible-intolerant 'Tracy M' soybean cultivars were inoculated with 0 or 15 000 eggs of Meloidogyne incognita or mixed stages of Pratylenchus penetrans per 800 cm3 of sandy loam soil and maintained under glasshouse conditions (28 ± 2°C) for 25 and 26 days. Plants received 83 ± 21 and 89 ± 19 ml either full-strength Hoagland solution (HS), HS without N (HS-N), or tap water daily in Experiments 1 and 2, respectively. Photosynthesis and nematode population dynamics were chosen to test FUE because the relationship between these two parameters, for the most part, determines the outcome of crop yield in the presence of nematodes. Although the FUE varied by fertiliser source, cultivar and nematode, the data were conclusive in identifying the interactions. FUE was high for photosynthesis in all three cultivars, and more so in HS than in HS-N. FUE was high for suppressing population densities of both nematodes and increasing photosynthesis in cv. Tracy M and for M. incognita in cv. G88-20092. Fertiliser application against P. penetrans in cv. Bryan was unproductive because nematode population density increased. FUE for P. penetrans in cv. G88-20092 and for M. incognita in cv. Bryan was less conclusive because there was some increase in nematode population density. Overall, these new approaches to identifying FUE for host productivity in the presence of nematodes provide quantitative data that should be of great interest to plant breeders, soil scientists, agronomists and plant protection specialists.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation