Cookies Policy
Cookie Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Detection of Heterodera schachtii infestation in sugar beet by means of laser-induced and pulse amplitude modulated chlorophyll fluorescence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

$30.00+ Tax (if applicable)
Add to Favorites

For more content, see Nematologica.

Two glasshouse experiments with sugar beet cvs Penta and Macarena inoculated, respectively, with 0 or 1500 and 0, 500, 1000 or 1500 juveniles of Heterodera schachtii, were conducted to estimate the capability of laser-induced chlorophyll fluorescence (LIF) and pulse amplitude modulated (PAM) chlorophyll fluorescence techniques to detect H. schachtii infestation and to differentiate between infestation levels. Fluorescence and gas exchange parameters, nitrogen and chlorophyll content of sugar beet leaves were measured weekly after nematode inoculation. Sugar beet plants responded to H. schachtii infestation initially with a decrease in photosynthesis rate and later with a reduction in nitrogen uptake and chlorophyll concentration. At the early stages of nematode infestation, before visual symptoms were evident, infested sugar beet plants displayed increased fluorescence (F680, F740). Later stages of infection were accompanied by an increase in the F686/F740 ratio, ground fluorescence (Fo) and a decrease in photochemical efficiency (Fv/Fm) induced by degradation of leaf chlorophyll. Sugar beet plants infested with 500, 1000 or 1500 juveniles per 100 cm3 of soil did not differ either in their nitrogen and chlorophyll content or in photosynthesis and transpiration rate. The linear discrimination analysis based on the combination of PAM and LIF parameters resulted in 100% correct classification of control plants and high classification rates (60-100%) of the infested treatments on all the sampling dates. Whether the fluorescence technique will differentiate nematode densities under field conditions needs further study.


Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Create email alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation