Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The effect of sandy soil, bacterium dose and time on the efficacy of Pasteuria penetrans to control Meloidogyne incognita race 1 on coffee

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

An obligate parasite bacterium of the root-knot nematode, Pasteuria penetrans strain P10, isolated from Meloidogyne incognita females on banana roots in Imperatriz Maranhão State, Brazil, was evaluated in glasshouse conditions, using two doses of a dry root bionematicide (107 endospores (5.0 g/seedling) and 106 endospores (0.5 g/seedling)) on seedlings of cv. Mundo Novo coffee. The soil in which coffee seedlings were raised was inoculated previously with these two doses of P. penetrans and after 2 months the plants were transferred to soils of different textures: clay-sandy soil (38% clay, 2% silt and 60% sand) and sandy soil (17% clay, 0% silt and 83% sand). When the coffee plants were 30 cm high, they were inoculated with 20 000 eggs/plant of M. incognita race 1. The coffee plants were examined 8, 16 and 24 months after nematode plant infestation. The effectiveness of the biological control was determined by the reduction of nematode reproduction factor, which ranged from 62 to 67% in clay-sandy soil and 80 to 85% in sandy soil. The mechanism of suppression caused by the bacterium was evaluated by the percentage of infected second-stage juveniles (J2), number of endospores attached/J2 and number of infected females. The high levels of suppression were related to time, increasing from 8 to 24 months, and to the percentage of sand in the soil.

Affiliations: 1: EMBRAPA Recursos Genéticos e Biotecnologia, C.P. 02372, 70849-970, Brasília, DF, Brazil


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation