Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Interaction between arbuscular mycorrhizal fungi and the nematicide aldicarb on hatch and development of the potato cyst nematode, Globodera pallida, and yield of potatoes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

The effects of inoculation of roots of the potato (Solanum tuberosum) cv. Golden Wonder with the mixed-isolate arbuscular mycorrhizal fungus (AMF) inoculum Vaminoc, or with three single-isolates AMF inocula (Glomus intraradices, G. mosseae and G. dussii; components of Vaminoc), on the potato cyst nematode (PCN) Globodera pallida were assessed in a pot experiment in the presence or absence of the nematicide aldicarb (Temik 10G). Mycorrhization of potato roots stimulated an 11% overall mean increase in the hatch of G. pallida within the first 2-4 weeks from planting. In the presence of aldicarb, AMF-inoculated plants exhibited only 57% of the PCN population size (viable eggs (g soil)−1) of the non-inoculated plants; in the absence of aldicarb the respective value was 42%. Root length colonisation by AMF was unaffected by the application of aldicarb. Roots of PCN-infested plants exhibited reduced levels of mycorrhizal colonisation (41%) compared to non-PCN-infested plants (45%). The AMF isolates used differed in their ability to produce a plant growth response (expressed as root dry weight, shoot dry weight or total dry biomass) and to affect tuber yield. In this regard, the single Glomus isolates enhanced plant growth (36% increase in total dry biomass) and improved fresh tuber yield by 22% on average, while Vaminoc had, in most cases, no effect. It was concluded that AMF have potential to reduce G. pallida multiplication via a dual mechanism involving stimulation of nematode hatch and inhibition of root invasion. Field experimentation will be required to take this research forward and assess the feasibility of including AMF in G. pallida integrated management strategies.

Affiliations: 1: Department of Zoology, Ecology and Plant Science, University College Cork, Cork, Ireland, Nematology and Entomology Group, Crop and Environment Research Centre, Harper Adams University College, Newport, Shropshire TF10 8NB, UK;, Email: tdeliopoulos@harper-adams.ac.uk; 2: Nematology and Entomology Group, Crop and Environment Research Centre, Harper Adams University College, Newport, Shropshire TF10 8NB, UK; 3: Department of Zoology, Ecology and Plant Science, University College Cork, Cork, Ireland

Loading

Full text loading...

/content/journals/10.1163/156854108786161427
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156854108786161427
Loading

Article metrics loading...

/content/journals/10.1163/156854108786161427
2008-11-01
2016-12-11

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation