Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Arabinogalactan endo-1,4-β-galactosidase: a putative plant cell wall-degrading enzyme of plant-parasitic nematodes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Plant-parasitic nematodes secrete a plethora of enzymes to degrade polysaccharides of the recalcitrant plant cell wall. Here we report on the presence of a putative endo-1,4-β-galactosidase (EC in cyst nematodes of the genus Heterodera. This enzyme hydrolyses β-1,4-galactan in the hairy regions of pectin and to our knowledge it is the first report of this class of enzymes in animals. The gene was cloned from H. schachtii and subjected to a detailed molecular characterisation. The deduced protein contains a putative signal peptide for secretion, being in agreement with the presumed extracellular function of the mature protein. It has a molecular mass of 33.78 kDa and folds into an (α/β)8 barrel structure typical for glycosyl hydrolases. The two glutamic acids that function as electron donor and acceptor in the active site are conserved. Whole mount in situ hybridisation revealed that the gene is expressed in the subventral pharyngeal glands and the expression was correlated with the onset of parasitism.

Affiliations: 1: Molecular Biotechnology Department, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation