Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Rapid decline of PCR amplification from genomic extracts of DESS-preserved, slide-mounted nematodes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Many studies use integrative methods to study both morphology and gene sequences of nematode species, yet there is little evidence to indicate the optimum criteria for merging taxonomic and molecular protocols. Preliminary evidence suggests that standard methods of desiccation and slide mounting nematode specimens in glycerin can sporadically result in degradation of genomic DNA. A time series experiment was constructed in order to assess whether this degradation of genomic DNA could be recorded and quantified. Two groups of nematode specimens were desiccated, mounted on slides, and stored at either 4°C or at room temperature for specified time intervals. Genomic DNA was extracted and PCR was conducted to amplify a section of the 18S rRNA gene at each time point. The resulting gel photographs were used to record the outcome of PCR and quantify the strength of amplification if successful. Results from slide-mounted specimens were compared to PCR products derived from unmounted nematodes extracted directly from the preservative solution at specified time intervals. The desiccation and slide mounting process appears to reduce overall band intensity after 1 day in slide mounts. Unmounted specimens consistently exhibit high success rates of PCR and a high overall DNA content per band at all time points, whereas slide-mounted nematodes show a decrease in the number of successful PCRs and weakening band intensity as time progresses. Results clearly indicate a steady degradation of genomic DNA in nematodes stored in slide mounts for more than 2 weeks, whereas unmounted specimens extracted from preservative solution showed no decline in PCR success or quality. We suggest a maximum storage period of 2 weeks on slides if mounted nematodes are to be used for molecular analyses.

Affiliations: 1: Nematode Research Group, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; National Oceanography Centre, European Way, Southampton SO14 3ZH, UK; 2: National Oceanography Centre, European Way, Southampton SO14 3ZH, UK

Loading

Full text loading...

/content/journals/10.1163/156854109x422922
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156854109x422922
Loading

Article metrics loading...

/content/journals/10.1163/156854109x422922
2009-10-01
2016-12-08

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation