Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Seasonal change in susceptibility of Pinus densiflora to Bursaphelenchus xylophilus infection, determined from the number of nematodes passing through branch sections

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Pine wilt disease by Bursaphelenchus xylophilus has been causing devastating damage to Pinus densiflora and P. thunbergii forests in Japan. Reforestation using resistant trees is one of the most effective control measures. In this study we examined the seasonal change in the number of nematodes passing through 5 cm long P. densiflora branch sections during 24 h, to determine the season of greatest susceptibility when resistant candidates can be identified easily. We inoculated 200 nematodes of each of four B. xylophilus and one B. mucronatus isolate on the cut end of individual branch sections. The overall seasonal change in the number of nematodes passing was similar among the five isolates. Peaks occurred in August and between December and February for four isolates. A virulent isolate, T-4, exhibited remarkable fluctuations, with the highest peak in August, suggesting that a test in August with T-4 is most informative. Another study showed that the passage ability, which is a measure of the dispersal ability in branches, was low for eggs and second-stage propagative juveniles and high for other developmental stages. This indicates that the composition of developmental stages in the inoculum is important when comparing the numbers of passing nematodes obtained on different occasions and in different places.

Affiliations: 1: Kyushu Regional Breeding Office, Forest Tree Breeding Centre, Forestry and Forest Products Research Institute, Koshi, Kumamoto 861-1102, Japan; 2: Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan;, Email:


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation