Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Suppression of Meloidogyne incognita in different agricultural soils and possible contribution of soil fauna

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

A total of 12 soils collected from different agricultural fields, having different backgrounds of organic input, were evaluated for their suppressive potential against Meloidogyne incognita. Second-stage juveniles (J2) of M. incognita were inoculated into the soils and their survival was evaluated. The number of M. incognita J2 5 days after inoculation differed depending on soil and was significantly lower in two soils, suggesting higher suppressiveness against M. incognita in these soils. This was confirmed by an experiment using tomato as a test plant, in which the gall formation was significantly lower in the two soils than in other soils. To estimate the contribution of below-ground biota to the suppressiveness, numbers of nematodes (predator, omnivore, bacterivore and fungivore) and other soil fauna such as tardigrades and rotifers, were counted. Some soil chemical and biological properties were also measured. Results from multiple linear regression analysis suggested that the number of rotifers, microbial activity, soil pH and total C may be involved in the suppression. The relationship between the suppressiveness and soil chemical and biological parameters is discussed.

Affiliations: 1: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation