Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effect of nitrogen supply form on the invasion of rice roots by the root-knot nematode, Meloidogyne graminicola

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Rice is capable of taking up both nitrate (NO3 −) and ammonical (NH4 +) forms of nitrogen (N). It is largely grown under flooded cultivation when NH4 + is the main form of available soil N. The root knot nematode, Meloidogyne graminicola, can cause serious damage to rice crops and disturb N uptake and translocation. We have investigated if the N supply form can influence the susceptibility of rice to this important pest. Roots supplied with a 100-fold lower supply of calcium nitrate (0.1 mM Ca(NO3)2) showed a higher level of nematode infection as measured by the gall index. Plants supplied with 2.85 mM of Ca(NO3)2 were more infected compared with the same dose of ammonium nitrate (NH4NO3) or ammonium chloride (NH4Cl). 15NO3 − influx studies showed significantly smaller uptake of nitrate in nematode-infected roots when compared with non-infected control plants. The electrophysiological studies showed that resting cell membrane potentials of nematode-infected plants were significantly smaller (less negative) than those of non-infected control rice. Furthermore, when the cellular responses to NO3 − were compared, these also showed significantly smaller nitrate transport activity in nematode-infected roots (4.7 ± 1.2 mV) when compared with non-infected control plants (11.9 ± 3.4 mV). Taken together, the 15NO3 − influx and electrophysiological measurements clearly showed that the root NO3 − transport activity was severely decreased in nematode-infected roots. The results also show that regulation of NO3 − concentration at critical periods of nematode infection of rice root can provide a non-nematicidal method of nematode management.

Affiliations: 1: 1Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; 2: 2Indian Agricultural Research Institute, New Delhi 110 012, India


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation