Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Relationships between labile soil organic matter and nematode communities in a California oak woodland

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Labile soil organic matter (SOM) is an important energy source for below-ground ecosystems but the association of labile SOM and nematode communities is poorly characterised. In this study, soil nematode communities and nematode-derived indices of ecosystem function were characterised and related to SOM lability in an undisturbed riparian woodland (California, USA). SOM lability was assessed by microbial biomass C (MBC), permanganate-oxidisable C (POXC), extractable organic C (EOC), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The channel index, which measures the ratio of bacterial-feeding to fungal-feeding nematodes in cp groups 1 and 2, respectively, decreased with labile C fractions and aliphatic C-H enrichment (infrared absorbance at 2920 cm−1) but increased with aromatic C=C enrichment (1620 cm−1) and index of decomposition (2930:1620 cm−1), as did the nematode structure index. These results indicate that nematode communities respond to variation in labile C fractions and SOM composition across a heterogeneous natural landscape, which may reflect observed differences in SOM lability among woody plant species.

Affiliations: 1: 1Department of Land, Air and Water Resources, University of California-Davis, Davis, CA 95616, USA ; 2: 2Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616, USA

*Corresponding author, e-mail: akhodson@ucdavis.edu
Loading

Full text loading...

/content/journals/10.1163/15685411-00003027
Loading

Data & Media loading...

1. Ami D., Natalello A., Zullini A., Doglia S.M. (2004). "Fourier transform infrared microspectroscopy as a new tool for nematode studies". FEBS Letters Vol 576, 297-300. http://dx.doi.org/10.1016/j.febslet.2004.09.022
2. Barker K.R. (1985). "Nematode extraction and bioassays". In: Barker K.R., Carter C.R., Sasser J.N. (Eds). An advanced treatise on Meloidogyne . Raleigh, NC, USA, North Carolina State University Graphics.
3. Barthès B.G., Brunet D., Rabary B., Ba O., Villenave C. (2011). "Near infrared reflectance spectroscopy (NIRS) could be used for characterization of soil nematode community". Soil Biology and Biochemistry Vol 43, 1649-1659. http://dx.doi.org/10.1016/j.soilbio.2011.03.023
4. Blair G., Lefroy R., Lisle L. (1995). "Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems". Australian Journal of Agricultural Research Vol 46, 1459-1466. http://dx.doi.org/10.1071/AR9951459
5. Bongers T. (1990). "The maturity index: an ecological measure of environmental disturbance based on nematode species composition". Oecologia Vol 83, 14-19. http://dx.doi.org/10.1007/BF00324627
6. Bongers T., Ferris H. (1999). "Nematode community structure as a bioindicator in environmental monitoring". Trends in Ecology & Evolution Vol 14, 224-228. http://dx.doi.org/10.1016/S0169-5347(98)01583-3
7. Bongers T., de Goede R.G.M., Korthals G., Yeates G.W. (1995). "Proposed changes of c-p classification for nematodes". Russian Journal of Nematology Vol 3, 61-62.
8. Bouwman L.A., Zwart K.B. (1994). "Soil ecology of conventional and integrated arable farming systems; the ecology of bacterivorous protozoans and nematodes in arable soil". Agriculture, Ecosystems & Environment Vol 51, 145-160. http://dx.doi.org/10.1016/0167-8809(94)90040-X
9. Briar S.S., Jagdale G.B., Cheng Z., Hoy C.W., Miller S.A., Grewal P.S. (2007). "Indicative value of soil nematode food web indices and trophic group abundance in differentiating habitats with a gradient of anthropogenic impact". Environmental Bioindicators Vol 2, 146-160. http://dx.doi.org/10.1080/15555270701590909
10. Calderón F.J., Mikha M.M., Vigil M.F., Nielsen D.C., Benjamin J.G., Reeves J.B. (2011a). "Diffuse-reflectance mid-infrared spectral properties of soils under alternative crop rotations in a semi-arid climate". Communications in Soil Science and Plant Analysis Vol 42, 2143-2159. http://dx.doi.org/10.1080/00103624.2011.596243
11. Calderón F.J., Reeves J.B., Collins H.P., Paul E.A. (2011b). "Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy". Soil Science Society of America Journal Vol 75, 568-579. http://dx.doi.org/10.2136/sssaj2009.0375
12. Chauvin C., Dorel M., Villenave C., Roger-Estrade J., Thuries L., Risède J.-M. (2015). "Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil". Applied Soil Ecology Vol 96, 131-140. http://dx.doi.org/10.1016/j.apsoil.2015.07.013
13. Culman S.W., Dupont S.T., Glover J.D., Buckley D.H., Fick G.W., Ferris H., Crews T. (2010). "Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA". Agriculture, Ecosystems & Environment Vol 137, 13-24. http://dx.doi.org/10.1016/j.agee.2009.11.008
14. Culman S.W., Snapp S.S., Freeman M.A., Schipanski M.E., Beniston J., Lal R., Drinkwater L.E., Franzluebbers A.J., Glover J.D., Grandy A.S. , et al (2012). "Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management". Soil Science Society of America Journal Vol 76, 494-504. http://dx.doi.org/10.2136/sssaj2011.0286
15. Culman S.W., Snapp S.S., Green J.M., Gentry L.E. (2013). "Short- and long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance". Agronomy Journal Vol 105, 493-502. http://dx.doi.org/10.2134/agronj2012.0382
16. Dahlgren R.A., Horwath W.R., Tate K.W., Camping T.J. (2003). "Blue oak enhance soil quality in California oak woodlands". California Agriculture Vol 57, 42-47. http://dx.doi.org/10.3733/ca.v057n02p42
17. Dalal R.C. (1998). "Soil microbial biomass; what do the numbers really mean?" Australian Journal of Experimental Agriculture Vol 38, 649-665. http://dx.doi.org/10.1071/EA97142
18. Demyan M.S., Rasche F., Schulz E., Breulmann M., Müller T., Cadisch G. (2012). "Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem". European Journal of Soil Science Vol 63, 189-199. http://dx.doi.org/10.1111/j.1365-2389.2011.01420.x
19. Dilly O., Irmler U. (1998). "Succession in the food web during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.) L.) forest". Pedobiologia Vol 42, 109-123.
20. Dupont S.T., Culman S.W., Ferris H., Buckley D.H., Glover J.D. (2010). "No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota". Agriculture, Ecosystems & Environment Vol 137, 25-32. http://dx.doi.org/10.1016/j.agee.2009.12.021
21. Erhagen B., Öquist M., Sparrman T., Haei M., Ilstedt U., Hedenström M., Schleucher J., Nilsson M.B. (2013). "Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material". Global Change Biology Vol 19, 3858-3871. http://dx.doi.org/10.1111/gcb.12342
22. Ernakovich J.G., Wallenstein M.D., Calderón F.J. (2015). "Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile". Soil Science Society of America Journal Vol 79, 784-793, DOI:. http://dx.doi.org/10.2136/sssaj2014.10.0420
23. Eshel G., Levy G.J., Mingelgrin U., Singer M.J. (2004). "Critical evaluation of the use of laser diffraction for particle-size distribution analysis". Soil Science Society of America Journal Vol 68, 736-743. http://dx.doi.org/10.2136/sssaj2004.7360
24. Essington M.E. (2004). Soil and water chemistry: an integrative approach. Boca Raton, FL, USA, CRC Press.
25. Ferris H. (2010). "Contribution of nematodes to the structure and function of the soil food web". Journal of Nematology Vol 42, 63-67.
26. Ferris H., Matute M.M. (2003). "Structural and functional succession in the nematode fauna of a soil food web". Applied Soil Ecology Vol 23, 93-110. http://dx.doi.org/10.1016/S0929-1393(03)00044-1
27. Ferris H., Bongers T. (2006). "Nematode indicators of organic enrichment". Journal of Nematology Vol 38, 3-12.
28. Ferris H., Venette R.C., Lau S.S. (1996). "Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility". Applied Soil Ecology Vol 3, 161-175. http://dx.doi.org/10.1016/0929-1393(95)00071-2
29. Ferris H., Bongers T., De Goede R.G.M. (2001). "A framework for soil food web diagnostics: extension of the nematode faunal analysis concept". Applied Soil Ecology Vol 18, 13-29. http://dx.doi.org/10.1016/S0929-1393(01)00152-4
30. Foster J.C. (1995). "Soil nitrogen". In: Alef K., Nannipieri P. (Eds). Methods in applied soil microbiology and biochemistry. San Diego, CA, USA, Academic Press.
31. Frankland J.C. (1998). "Fungal succession – unravelling the unpredictable". Mycological Research Vol 102, 1-15. http://dx.doi.org/10.1017/S0953756297005364
32. Giacometti C., Demyan M.S., Cavani L., Marzadori C., Ciavatta C., Kandeler E. (2013). "Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems". Applied Soil Ecology Vol 64, 32-48. http://dx.doi.org/10.1016/j.apsoil.2012.10.002
33. Grandy A.S., Neff J.C. (2008). "Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function". Science of the Total Environment Vol 404, 297-307. http://dx.doi.org/10.1016/j.scitotenv.2007.11.013
34. Grosso F., Bååth E., De Nicola F. (2016). "Bacterial and fungal growth on different plant litter in Mediterranean soils: effects of C/N ratio and soil pH". Applied Soil Ecology Vol 108, 1-7. http://dx.doi.org/10.1016/j.apsoil.2016.07.020
35. Hodson A.K., Ferris H., Hollander A.D., Jackson L.E. (2014). "Nematode food webs associated with native perennial plant species and soil nutrient pools in California riparian oak woodlands". Geoderma Vol 228-229, 182-191. http://dx.doi.org/10.1016/j.geoderma.2013.07.021
36. Hsu J.-H., Lo S.-L. (1999). "Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure". Environmental Pollution Vol 104, 189-196. http://dx.doi.org/10.1016/S0269-7491(98)00193-6
37. Inbar Y., Chen Y., Hadar Y. (1989). "Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter". Soil Science Society of America Journal Vol 53, 1695-1701. http://dx.doi.org/10.2136/sssaj1989.03615995005300060014x
38. Leonowicz A., Cho N., Luterek J., Wilkolazka A., Wojtas-Wasilewska M., Matuszewska A., Hofrichter M., Wesenberg D., Rogalski J. (2001). "Fungal laccase: properties and activity on lignin". Journal of Basic Microbiology Vol 41, 185-227. http://dx.doi.org/10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T
39. Liang C., Balser T.C. (2011). "Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy". Nature Reviews Microbiology Vol 9, 75. http://dx.doi.org/10.1038/nrmicro2386-c1
40. Mäkelä M.R., Marinović M., Nousiainen P., Liwanag A.J.M., Benoit I., Sipilä J., Hatakka A., De Vries R.P., Hildén K.S. (2015). "Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass". In: Sima S., Geoffrey Michael G. (Eds). Advances in applied microbiology. New York, NY, USA, Academic Press, pp.  63-137.
41. Margenot A.J., Calderón F.J., Bowles T.M., Parikh S.J., Jackson L.E. (2015). "Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields". Soil Science Society of America Journal Vol 79, 772-782. http://dx.doi.org/10.2136/sssaj2015.02.0070
42. Marschner B., Kalbitz K. (2003). "Controls of bioavailability and biodegradability of dissolved organic matter in soils". Geoderma Vol 113, 211-235. http://dx.doi.org/10.1016/S0016-7061(02)00362-2
43. Meier C.L., Bowman W.D. (2008). "Links between plant litter chemistry, species diversity, and below-ground ecosystem function". Proceedings of the National Academy of Sciences of the United States of America Vol 105, 19780-19785. http://dx.doi.org/10.1073/pnas.0805600105
44. Miranda K.M., Espey M.G., Wink D.A. (2001). "A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite". Nitric Oxide Vol 5, 62-71. http://dx.doi.org/10.1006/niox.2000.0319
45. Niles R.K., Freckman D.W. (1998). "From the ground up: nematode ecology in bioassessment and ecosystem health". In: Barker K., Pederson G., Windham G. (Eds). Plant and nematode interactions. Madison, WI, USA, American Sociery of Agronomy, pp.  65-85.
46. Northup R.R., Yu Z., Dahlgren R.A., Vogt K.A. (1995). "Polyphenol control of nitrogen release from pine litter". Nature Vol 377, 227-229. http://dx.doi.org/10.1038/377227a0
47. Okada H., Kadota I. (2003). "Host status of 10 fungal isolates for two nematode species, Filenchus misellus and Aphelenchus avenae". Soil Biology and Biochemistry Vol 35, 1601-1607. http://dx.doi.org/10.1016/j.soilbio.2003.08.004
48. Okada H., Tsukiboshi T., Kadota I. (2002). "Mycetophagy in Filenchus misellus (Andrássy, 1958) Raski & Geraert, 1987 (Nematoda: Tylenchidae), with notes on its morphology". Nematology Vol 4, 795-801. http://dx.doi.org/10.1163/156854102760402586
49. Okada H., Harada H., Kadota I. (2005). "Fungal-feeding habits of six nematode isolates in the genus Filenchus". Soil Biology and Biochemistry Vol 37, 1113-1120. http://dx.doi.org/10.1016/j.soilbio.2004.11.010
50. Panettieri M., Knicker H., Murillo J.M., Madejón E., Hatcher P.G. (2014). "Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS 13C NMR". Soil Biology and Biochemistry Vol 78, 170-181. http://dx.doi.org/10.1016/j.soilbio.2014.07.021
51. Panettieri M., Berns A.E., Knicker H., Murillo J.M., Madejón E. (2015). "Evaluation of seasonal variability of soil biogeochemical properties in aggregate-size fractioned soil under different tillages". Soil and Tillage Research Vol 151, 39-49. http://dx.doi.org/10.1016/j.still.2015.02.008
52. Parikh S.J., Goyne K.W., Margenot A.J., Mukome F.N.D., Calderón F.J. (2014). "Soil chemical insights provided through vibrational spectroscopy". In: Donald L.S. (Ed.). Advances in agronomy. New York, NY, USA, Academic Press, pp.  1-148.
53. Plaza-Bonilla D., Álvaro-Fuentes J., Cantero-Martínez C. (2014). "Identifying soil organic carbon fractions sensitive to agricultural management practices". Soil and Tillage Research Vol 139, 19-22. http://dx.doi.org/10.1016/j.still.2014.01.006
54. R Development Core Team (2014). R: a language and enviroment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available online at http://www.R-project.org.
55. Rineau F., Roth D., Shah F., Smits M., Johansson T., Canbäck B., Olsen P.B., Persson P., Grell M.N., Lindquist E. , et al (2012). "The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry". Environmental Microbiology Vol 14, 1477-1487. http://dx.doi.org/10.1111/j.1462-2920.2012.02736.x
56. Ros G.H., Hoffland E., Van Kessel C., Temminghoff E.J.M. (2009). "Extractable and dissolved soil organic nitrogen – a quantitative assessment". Soil Biology and Biochemistry Vol 41, 1029-1039. http://dx.doi.org/10.1016/j.soilbio.2009.01.011
57. Rosenbrock P., Buscot F., Munch J. (1995). "Fungal succession and changes in the fungal degradation potential during the initial stage of litter decomposition in a black alder forest (Alnus glutinosa (L.) Gaertn.)". European Journal of Soil Biology Vol 31, 1-11.
58. Rossetti I., Bagella S., Cappai C., Caria M.C., Lai R., Roggero P.P., Martins Da Silva P., Sousa J.P., Querner P., Seddaiu G. (2015). "Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland". Agriculture, Ecosystems & Environment Vol 202, 203-216. http://dx.doi.org/10.1016/j.agee.2015.01.008
59. Ruess L., Ferris H. (2004). "Decomposition pathways and successional changes". In: Cook R., Hunt D.J., Cook R., Hunt D.J.). Leiden, The Netherlands, Brill, pp.  547-556.
60. San-Blas E., Guerra M., Portillo E., Esteves I., Cubillán N., Alvarado Y. (2011). "ATR/FTIR characterization of Steinernema glaseri and Heterorhabditis indica". Vibrational Spectroscopy Vol 57, 220-228. http://dx.doi.org/10.1016/j.vibspec.2011.07.008
61. Sánchez-Moreno S., Nicola N.L., Ferris H., Zalom F.G. (2009). "Effects of agricultural management on nematode-mite assemblages: soil food web indices as predictors of mite community composition". Applied Soil Ecology Vol 41, 107-117. http://dx.doi.org/10.1016/j.apsoil.2008.09.004
62. Sánchez-Moreno S., Ferris H., Young-Mathews A., Culman S.W., Jackson L.E. (2011). "Abundance, diversity and connectance of soil food web channels along environmental gradients in an agricultural landscape". Soil Biology and Biochemistry Vol 43, 2374-2383. http://dx.doi.org/10.1016/j.soilbio.2011.07.016
63. Scheu S., Ruess L., Bonkowski M. (2005). "Interactions between micro-organisms and soil micro- and mesofauna". In: Buscot F., Varma S. (Eds). Micro-organisms in soils: roles in genesis and functions. Heidelberg, Germany, Springer, pp.  253-275. http://dx.doi.org/10.1007/3-540-26609-7_12
64. Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kogel-Knabner I., Lehmann J., Manning D.A.C. , et al (2011). "Persistence of soil organic matter as an ecosystem property". Nature Vol 478, 49-56. http://dx.doi.org/10.1038/nature10386
65. Sheng M., Gorzsás A., Tuck S. (2016). "Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms". Worm Vol 5, e1132978. http://dx.doi.org/10.1080/21624054.2015.1132978
66. Six J., Frey S.D., Thiet R.K., Batten K.M. (2006). "Bacterial and fungal contributions to carbon sequestration in agroecosystems". Soil Science Society of America Journal Vol 70, 555-569, DOI:. http://dx.doi.org/10.2136/sssaj2004.0347
67. Smidt E., Lechner P., Schwanninger M., Haberhauer G., Gerzabek M.H. (2002). "Characterization of waste organic matter by FT-IR spectroscopy: application in waste science". Applied Spectroscopy Vol 56, 1170-1175. http://dx.doi.org/10.1366/000370202760295412
68. Sparling G. (1992). "Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter". Soil Research Vol 30, 195-207. http://dx.doi.org/10.1071/SR9920195
69. Steel H., de la Peña E., Fonderie P., Willekens K., Borgonie G., Bert W. (2010). "Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity". Pedobiologia Vol 53, 181-190. http://dx.doi.org/10.1016/j.pedobi.2009.09.003
70. Ugarte C.M., Zaborski E.R., Wander M.M. (2013). "Nematode indicators as integrative measures of soil condition in organic cropping systems". Soil Biology and Biochemistry Vol 64, 103-113. http://dx.doi.org/10.1016/j.soilbio.2013.03.035
71. Vance E.D., Brookes P.C., Jenkinson D.S. (1987). "An extraction method for measuring soil microbial biomass C". Soil Biology and Biochemistry Vol 19, 703-707. http://dx.doi.org/10.1016/0038-0717(87)90052-6
72. Verchot L.V., Dutaur L., Shepherd K.D., Albrecht A. (2011). "Organic matter stabilization in soil aggregates: understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils". Geoderma Vol 161, 182-193. http://dx.doi.org/10.1016/j.geoderma.2010.12.017
73. Veum K., Goyne K., Kremer R., Miles R., Sudduth K. (2014). "Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum". Biogeochemistry Vol 117, 81-99. http://dx.doi.org/10.1007/s10533-013-9868-7
74. Wardle D.A., Bardgett R.D., Klironomos J.N., Setälä H., van der Putten W.H., Wall D.H. (2004). "Ecological linkages between aboveground and belowground biota". Science Vol 304, 1629-1633. http://dx.doi.org/10.1126/science.1094875
75. Weil R.R., Islam K.R., Stine M.A., Gruver J.B., Samson-Liebig S.E. (2003). "Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use". American Journal of Alternative Agriculture Vol 18, 3-17. http://dx.doi.org/10.1079/AJAA2003003
76. Wright C.J., Coleman D.C. (2000). "Cross-site comparison of soil microbial biomass, soil nutrient status, and nematode trophic groups". Pedobiologia Vol 44, 2-23. http://dx.doi.org/10.1078/S0031-4056(04)70024-4
77. Yeates G.W., Bongers T., de Goede R.G.M., Freckman D.W., Georgieva S.S. (1993). "Feeding habits in soil nematode families and genera – an outline for soil ecologists". Journal of Nematology Vol 25, 315-331.
http://brill.metastore.ingenta.com/content/journals/10.1163/15685411-00003027
Loading

Article metrics loading...

/content/journals/10.1163/15685411-00003027
2016-11-21
2018-06-22

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation