Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Cellular and humoral responses of Pieris brassicae to infection by Steinernema feltiae, its symbiont bacteria, and their metabolites

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

For more content, see Nematologica.

This study describes the mortality effects of the culture broth of Xenorhabdus bovienii and its aqueous and organic extracts on Pieris brassicae larvae. All the treatments had insecticidal activities when injected into the haemocoel. The culture broth of bacteria and its aqueous extracts exhibited more insecticidal activity. The results showed the immune response of P. brassicae exposed to Steinernema feltiae, its symbiont bacteria, X. bovienii, and aqueous and organic extracts of bacteria. Both cellular and humoral responses were investigated. After infection of the larvae of P. brassicae with S. feltiae, the total number of haemocytes quickly increased. A reduction in the number of haemocytes was observed over post-injection time. In addition, plasmatocytes and granulocytes showed increased frequency and significant changes when compared to other haemocytes in responding to entomopathogenic nematode injection. Steinernema feltiae increased phenoloxidase activity but 3 h post-injection the concentration gradually decreased. However, a reduction in phenoloxidase activity was observed when the larvae were infected with bacteria or their aqueous and organic extracts. This study showed that both living and heat-killed bacteria have suppression effects on phenoloxidase activity. The lysozyme concentration increased in P. brassicae larvae when they were exposed to living and heat-killed X. bovienii. No suppression effect of the bacteria was detected on lysozyme.

Affiliations: 1: 1Department of Entomology, Agricultural Sciences Faculty, University of Mohaghegh Ardabili, Ardabil, Iran ; 2: 2Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

*Corresponding author, e-mail: tanhamaafi@iripp.ir
Loading

Full text loading...

/content/journals/10.1163/15685411-00003062
Loading

Data & Media loading...

1. Abdolmaleki A., Tanha Maafi Z., Rafiee Dastjerdi H., Lewis E. (2015). "Potential efficacy of Iranian isolates of Heterorhabditis bacteriophora and Steinernema feltiae on Pieris brassicae (Lepidoptera: Pieridae)". Russian Journal of Nematology Vol 23, 91-97.
2. Abdolmaleki A., Tanha Maafi Z., Rafiee Dastjerdi H., Naseri B., Ghasemi A. (2016). "Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Kurdistan province in Iran". Journal of Crop Protection Vol 5, 259-271.
3. Abu-Elmagd A.A., El-Kifl T.A.H. (1993). "Cellular and humoral immune reactions of Spodoptera littoralis and Agrotis ipsilon larvae against the nematode Heterorhabditis heliothidis". Journal of the Egyptian German Society for Zoology Vol 12, 475-488.
4. Allen J.E., MacDonald A.S. (1998). "Profound suppression of cellular proliferation mediated by the secretions of nematodes". Parasite Immunology Vol 20, 241-247. DOI: [Crossref]
5. Ashida M., Kinoshita K., Brey P.T. (1990). "Studies on prophenoloxidase activation in the mosquito Aedes aegypti L." European Journal of Biochemistry Vol 188, 507-515. DOI: [Crossref]
6. Beckage N.E. (2008). Insect immunology. San Diego, CA, USA, Academic Press.
7. Bowen D., Rocheleau T.A., Blackburn M., Andreev O., Golubeva E., Bhartia R., Ffrench-Constant R.H. (1998). "Insecticidal toxins from the bacterium Photorhabdus luminescens". Science Vol 280, 2129-2132. DOI: [Crossref]
8. Bradford M.M. (1976). "A rapid and sensitive method for the quantitating of microgram quantities of protein utilizing the principle of protein-dye binding". Analytical Biochemistry Vol 72, 248-254. DOI: [Crossref]
9. Brehelin M., Drif L., Boemare H. (1989). "Insect haemolymph: cooperation between humoral and cellular factors in Locusta migratoria". Insect Biochemistry Vol 19, 301-307. DOI: [Crossref]
10. Brillard J., Duchaud E., Boemare N., Kunst F., Givaudan A. (2002). "The PhlA hemolysin from the entomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretion family of hemolysins". Journal of Bacteriology Vol 184, 3871-3878. DOI: [Crossref]
11. Brivio M.F., Pagani M., Restelli S. (2002). "Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite cuticle". Experimental Parasitology Vol 101, 149-156. DOI: [Crossref]
12. Brivio M.F., Mastore M., Pagani M. (2005). "Parasite-host relationship: a lesson from a professional killer". Invertebrate Survival Journal Vol 2, 41-53.
13. Cartea M.E., Padilla G., Vilar M., Velasco P. (2009). "Incidence of the major Brassica pests in Northwestern Spain". Journal of Economic Entomology Vol 102, 767-773. DOI: [Crossref]
14. Chen X.H., Kaumaustisi A., Scholz R., Borris R. (2009). "More than anticipated production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42". Journal of Molecular Microbiology and Biotechnology Vol 16, 14-24. DOI: [Crossref]
15. Cho S., Kim Y. (2004). "Hemocyte apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori". Journal of Asia-Pacific Entomology Vol 7, 195-200. DOI: [Crossref]
16. Ciche T.A., Ensign J.C. (2003). "For the insect pathogen Photorhabdus luminescens, which end of a nematode is out?" Applied and Environmental Microbiology Vol 69, 1890-1897. DOI: [Crossref]
17. Dunphy G.B., Webster J.M. (1988a). "Virulence mechanisms of Heterorhabditis heliothidis and its bacterial associate, Xenorhabdus lumirescens, in non-immune larvae of the greater wax moth, Galleria mellonella". International Journal for Parasitology Vol 18, 729-737. DOI: [Crossref]
18. Dunphy G.B., Webster J.M. (1988b). "Lipopolisaccharides of Xenorhabdus nematophilus (Enterobacteriaceae) and their haemocyte toxicity in non-immune Galleria mellonella (Insecta: Lepidoptera) larvae". Journal of General Microbiology Vol 134, 1017-1028. DOI:
19. Forst S., Dowds B., Boemare N., Stackebrandt E. (1997). "Xenorhabdus spp. and Photorhabdus spp.: bugs that kill bugs". Annual Review of Microbiology Vol 51, 47-72. DOI: [Crossref]
20. Freitak D., Wheat C.W., Heckel D.G., Vogel H. (2007). "Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni". BMC Biology Vol 5, 1-13. DOI: [Crossref]
21. Gotz P., Boman A., Boman H.G. (1981). "Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria". Proceedings of the Royal Society of London, B: Biological Sciences Vol 212, 333-350. DOI: [Crossref]
22. Grewal P.S., Koppenhöfer A.M., Choo H.Y. (2005). "Lawn, turfgrass and pasture application". In: Grewal P.S., Ehlers R.-U., Shapiro-Ilan D.I. (Eds). Nematode as biocontrol agents. Wallingford, UK, CAB International, pp.  115-147. [Crossref]
23. Gupta A.P. (1979). "Haemocyte types: their structure, synonymies, interrelationships and taxonomic significance". In: Gupta A.P. (Ed.). Insect haemocytes. Cambridge, UK, Cambridge University Press, pp.  85-127. [Crossref]
24. Hames B.D., Rickwood D. (1981). Gel electrophoresis of proteins: a practical approach. Oxford, UK, IRL Press.
25. Hernández-Martínez P., Naseri B., Navarro-Cerrillo G., Escriche B., Ferré J., Herrero S. (2010). "Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis". Environmental Microbiology Vol 12, 2730-2737. DOI:
26. Hiruma K., Riddiford L.M. (1988). "Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm: regulation of its synthesis in the epidermis by juvenile hormone". Developmental Biology Vol 130, 87-97. DOI: [Crossref]
27. Hultmark D. (1996). "Insect lysozymes". In: Jolles P. (Ed.). Lysozymes: model enzymes in biochemistry and biology. Basel, Switzerland, Birkhauser, pp.  87-102. [Crossref]
28. IBM SPSS Inc. (2010). SPSS for Windows, user’s guide release6. Chicago, IL, USA, SPSS.
29. Li B., Calvo E., Marinotti O., James A.A., Paskewitz S.M. (2005). "Characterization of the C-type lysozyme gene family in Anopheles gambiae". Gene Vol 360, 131-139. DOI: [Crossref]
30. Li Q., Sun Y., Wang G., Liu X. (2009). "Effects of the mermithid nematode Ovomermis sinensis on the hemocytes of its host Helicoverpa armigera". Journal of Insect Physiology Vol 55, 47-50. DOI: [Crossref]
31. Li X.Y., Cowles P.S., Cowles E.A., Gaugler R., Cox-Foster D.L. (2007). "Relationship between the successful infection by entomopathogenic nematodes and the host immune response". International Journal for Parasitology Vol 37, 365-374. DOI: [Crossref]
32. Martens E.C., Heungens K., Goodrich-Blair H. (2003). "Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria". Journal of Bacteriology Vol 185, 3147-3154. DOI: [Crossref]
33. McInerney B.V., Taylor W.C., Lacey M.J., Akhurst R.J., Gregson R.P. (1991). "Biologically active metabolites from Xenorhabdus spp.: part 2. Benzopyran-1-one derivatives with gastroprotective activity". Journal of Natural Products Vol 54, 785-795. DOI: [Crossref]
34. Pan Y.H., Jian H., Zhang J., Liu Z., Chen Z.Y., Yang X.F., Yang H.W., Huang D.F. (2002). "An intracellular toxic protein (Xin) isolated from Xenorhabdus nematophilus strain BJ". Progress in Natural Science Vol 12, 310-312.
35. Parham P. (2009). The immune system. New York, NY, USA, Garland Science.
36. Pham L.N., Schneider D.S. (2008). "Evidence for specificity and memory in the insect innate immune response". In: Beckage N.E. (Ed.). Insect immunology. San Diego, CA, USA, Academic Press, pp.  97-128. [Crossref]
37. Rahatkhah Z., Karimi J., Ghadamyari M., Brivio M.F. (2015). "Immune defenses of Agriotes lineatus larvae against entomopathogenic nematodes". BioControl Vol 60, 1-11. DOI: [Crossref]
38. Raymond M. (1985). "Presentation d’un programme Basic d’analyse log-probit pour micro-ordinateur". Cahiers ORSTOM. Ser. Entomologie Médicale et Parasitologie Vol 22, 117-121.
39. Ryu K.G., Bae J.S., Yu Y.S., Park S.H. (2000). "Insecticidal toxin from Xenorhabdus nematophilus, symbiotic bacterium associated with entomopathogenic nematode Steinernema glaseri". Biotechnology and Bioprocess Engineering Vol 5, 141-145. DOI: [Crossref]
40. Shrestha S., Kim Y. (2010). "Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum". Journal of Asia-Pacific Entomology Vol 13, 209-213. DOI: [Crossref]
41. Strand M.R. (2008). "The insect cellular immune response". Journal of Insect Science Vol 15, 1-14. DOI: [Crossref]
42. Ursic Bedoya R.J., Metzey A.M., Obraztsova M., Lowenberger C. (2005). "Molecular cloning and transcriptional activation of lysozyme-encoding cDNAs in the mosquito Aedes aegypti". Insect Molecular Biology Vol 14, 89-94. DOI: [Crossref]
43. Wang Y., Gaugler R. (1998). "Host and penetration site location by entomopathogenic nematodes against Japanese beetle larvae". Journal of Invertebrate Pathology Vol 72, 313-318. DOI: [Crossref]
44. Wang Y., Gaugler R., Cui L. (1994). "Variations in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species". Journal of Nematology Vol 26, 11-18.
45. Webster J.M., Chen G., Li J. (1998). "Parasitic worms: an ally in the war against superbugs". Parasitology Today Vol 14, 161-163. [Crossref]
46. Yokoo S., Tojo S., Ishibashi N. (1992). "Suppression of the prophenoloxidase cascade in the larval haemolymph of the turnip moth, Agrotis segetum by an entomopathogenic nematode, Steinernema carpocapsae and its symbiotic bacterium". Journal of Insect Physiology Vol 38, 915-924. DOI: [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/15685411-00003062
Loading

Article metrics loading...

/content/journals/10.1163/15685411-00003062
2017-05-02
2018-04-21

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation