Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Estimation of phylogenetic divergence times in Panagrolaimidae and other nematodes using relaxed molecular clocks calibrated with insect and crustacean fossils

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

For more content, see Nematologica.

This study presents the use of relaxed molecular clock methods to infer the dates of divergence between Panagrolaimus species. Autocorrelated relaxed tree methods, combined with well characterised fossil calibration dates, yield estimates of nematode divergence dates in accordance with the palaeontological age of fossil ascarid eggs and with the previously estimated date of 18 Ma (range 11.6 to 29.9 Ma) for the divergence of the Caenorhabditis lineage. Our data indicate that Panagrolaimus davidi from Antarctica separated ca 21.98 Ma from its currently known, most closely related strain. Thus, P. davidi may have existed in Antarctica prior to the Last Glacial Maximum, although this seems unlikely as it shares physiological and life history traits with closely related nematodes from temperate climates. These traits may have facilitated colonisation of Antarctica by P. davidi after the quaternary glaciation, analogous to the colonisation of Surtsey Island, Iceland, by P. superbus after its volcanic formation. This study demonstrates that autocorrelated relaxed tree methods combined with well characterised fossil calibration dates may be used as a method to estimate the divergence dates within nematodes in order to gain insight into their evolutionary history.

Affiliations: 1: 1Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland ; 2: 2School of Biological Sciences and School of Earth Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK

*Corresponding author, e-mail: lorrainemcgill@gmail.com
Loading

Full text loading...

/content/journals/10.1163/15685411-00003096
Loading

Data & Media loading...

1. Andrássy I. (1998). "Nematodes of the sixth continent". Journal of Nematode Morphology and Systematics Vol 1, 107-186.
2. Aroian R.V., Carta L., Kaloshian I., Sternberg P.W. (1993). "A free-living Panagrolaimus sp. from Armenia can survive in anhydrobiosis for 8.7 years". Journal of Nematology Vol 25, 500-502.
3. Barrière A., Félix M. (2006). "Isolation of C. elegans and realted nematodes". In: The C. elegans Research Community (Eds). WormBook. Pasadena, CA, USA, pp. 1-9.
4. Benton M.J., Donoghue P.C.J., Asher R.J. (2009). "Calibrating and constraining molecular clocks". In: Hedges S.B., Kumar S. (Eds). The time tree of life. Oxford, UK, Oxford University Press, pp.  35-86.
5. Bladursson S., Ingadóttir A. (2007). Nomination of Surtsey for the UNESCO world heritage list. Reykjavík, Iceland, Icelandic Institute of Natural History.
6. Blaxter M.L., De Ley P., Garey J.R., Liu L.X., Scheldeman P., Vierstraete A., Vanfleteren J.R., Mackey L.Y., Dorris M., Frisse L.M. , et al (1998). "A molecular evolutionary framework for the phylum Nematoda". Nature Vol 392, 71-75. DOI: 10.1038/32160 [Crossref]
7. Bongers T. (1990). "The maturity index – an ecological measure of environmental disturbance based on nematode species composition". Oecologia Vol 83, 14-19. DOI: 10.1007/Bf00324627 [Crossref]
8. Borgonie G., Garcia-Moyano A., Litthauer D., Bert W., Bester A., van Heerden E., Moller C., Erasmus M., Onstott T.C. (2011). "Nematoda from the terrestrial deep subsurface of South Africa". Nature Vol 474, 79-82. DOI: 10.1038/nature09974 [Crossref]
9. Boström S. (1988). "Descriptions and morphological variability of three populations of Panagrolaimus Fuchs, 1930 (Nematoda, Panagrolaimidae)". Nematologica Vol 34, 144-155. DOI: 10.1163/002825988X00233 [Crossref]
10. Brown I.M., Wharton D.A., Millar R.B. (2004). "The influence of temperature on the life history of the Antarctic nematode Panagrolaimus davidi". Nematology Vol 6, 883-890. DOI: 10.1163/1568541044038641 [Crossref]
11. Caldwell J.R. (1981). "The Signy Island terrestrial reference sites: XIII. Population dynamics of the nematode fauna". British Antarctic Survey Bulletin Vol 54, 33-46.
12. Clegg J.S. (2001). "Cryptobiosis – a peculiar state of biological organization". Comparative Biochemistry and Physiology – Part B Vol 128, 613-624. DOI: 10.1016/S1096-4959(01)00300-1 [Crossref]
13. Cohen K.M., Finney S., Gibbard P.L., Fan J.-X. (2013; updated). International chronostratigraphic chart. Available online at http://www.stratigraphy.org/ICSchart/ChronostratChart2017-02.pdf.
14. Convey P. (2000). "How does cold constrain life cycles of terrestrial plants and animals?" CryoLetters Vol 21, 73-82.
15. Convey P. (2009). "Comparative studies of Antarctic arthropod and bryophyte lifecycles: do they have a common strategy?" In: Battaglia B., Valencia J., Walton D.W.H. (Eds). Antarctic communities: species, structure and survival. Cambridge, UK, Cambridge University Press, pp.  321-327.
16. Convey P., Stevens M.I. (2007). "Antarctic biodiversity". Science Vol 317, 1877-1878. DOI: 10.1126/Science.1147261 [Crossref]
17. Convey P., Gibson J.A.E., Hillenbrand C.D., Hodgson D.A., Pugh P.J.A., Smellie J.L., Stevens M.I. (2008). "Antarctic terrestrial life – challenging the history of the frozen continent?" Biological Reviews Vol 83, 103-117. DOI: 10.1111/J.1469-185x.2008.00034.X [Crossref]
18. Coughlan A., Wolfe K.H. (2002). "Fourfold faster rate of genome rearrangement in nematodes than in Drosophilia". Genome Research Vol 12, 857-867. DOI: 10.1101/gr.172702 [Crossref]
19. Crowe J.H., Hoekstra F.A., Crowe L.M. (1992). "Anhydrobiosis". Annual Review of Physiology Vol 54, 579-599. DOI: 10.1146/annurev.physiol.54.1.579 [Crossref]
20. Cutter A.D. (2008). "Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate". Molecular Biology and Evolution Vol 25, 778-786. DOI: 10.1093/Molbev/Msn024 [Crossref]
21. Darby B.J., Neher D.A., Belnap J. (2010). "Impact of biological soil crusts and desert plants on soil microfaunal community composition". Plant and Soil Vol 328, 421-431. DOI: 10.1007/s11104-009-0122-y [Crossref]
22. Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. (2006). "Relaxed phylogenetics and dating with confidence". PLOS Biology Vol 4, 699-710. DOI: 10.1371/Journal.Pbio.0040088 [Crossref]
23. Edgar R.C. (2004). "MUSCLE: multiple sequence alignment with high accuracy and high throughput". Nucleic Acids Research Vol 32, 1792-1797. DOI: 10.1093/Nar/Gkh340 [Crossref]
24. Erwin D.H., Laflamme M., Tweedt S.M., Sperling E.A., Pisani D., Peterson K.J. (2011). "The Cambrian conundrum: early divergence and later ecological success in the early history of animals". Science Vol 334, 1091-1097. DOI: 10.1126/Science.1206375 [Crossref]
25. Flower B.P., Kennett J.P. (1993). "Middle Miocene ocean-climate transition – high-resolution oxygen and carbon isotopic records from deep-sea drilling project site 588a, southwest Pacific". Paleoceanography Vol 8, 811-843. DOI: 10.1029/93pa02196 [Crossref]
26. Fonderie P., Willems M., Bert W., Houthoofd W., Steel H., Claeys M., Borgonie G. (2009). "Intestine ultrastructure of the facultative parasite Halicephalobus gingivalis (Nematoda: Panagrolaimidae)". Nematology Vol 11, 859-868. DOI: 10.1163/156854109X428025 [Crossref]
27. Greenslade P.J.M. (1983). "Adversity selection and the habitat templet". American Naturalist Vol 122, 352-365. DOI: 10.1086/284140 [Crossref]
28. Ho S.Y., Duchene S. (2014). "Molecular-clock methods for estimating evolutionary rates and timescales". Molecular Ecology Vol 23, 5947-5965. DOI: 10.1111/mec.12953 [Crossref]
29. Huang X.Q., Madan A. (1999). "Cap3: a DNA sequence assembly program". Genome Research Vol 9, 868-877. DOI: 10.1101/Gr.9.9.868 [Crossref]
30. Jia F., Lo N., Ho S.Y. (2014). "The impact of modelling rate heterogeneity among sites on phylogenetic estimates of intraspecific evolutionary rates and timescales". PLOS ONE Vol 9, e95722. DOI: 10.1371/journal.pone.0095722
31. Kennett J.P. (1977). "Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleocenography". Journal of Geophysical Research-Oceans and Atmospheres Vol 82, 3843-3860. DOI: 10.1029/JC082i027p03843 [Crossref]
32. Lartillot N., Philippe H. (2004). "A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process". Molecular Biology and Evolution Vol 21, 1095-1109. DOI: 10.1093/Molbev/Msh112 [Crossref]
33. Lartillot N., Lepage T., Blanquart S. (2009). "PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating". Bioinformatics Vol 25, 2286-2288. DOI: 10.1093/Bioinformatics/Btp368 [Crossref]
34. Lazarova S.S., de Goede R.G.M., Peneva V.K., Bongers T. (2004). "Spatial patterns of variation in the composition and structure of nematode communities in relation to different microhabitats: a case study of Quercus dalechampii Ten. forest". Soil Biology & Biochemistry Vol 36, 701-712. DOI: 10.1016/j.soilbio.2004.01.005 [Crossref]
35. Lepage T., Bryant D., Philippe H., Lartillot N. (2007). "A general comparison of relaxed molecular clock models". Molecular Biology and Evolution Vol 24, 2669-2680. DOI: 10.1093/Molbev/Msm193 [Crossref]
36. Lewis S.C., Dyal L.A., Hilburn C.F., Weitz S., Liau W.S., LaMunyon C.W., Denver D.R. (2009). "Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi". BMC Evolutionary Biology Vol 9, 15. DOI: 10.1186/1471-2148-9-15 [Crossref]
37. Lynch M. (2007). The origins of genome architecture. Sunderland, MA, USA, Sinauer Associates.
38. Maslen N.R., Convey P. (2006). "Nematode diversity and distribution in the southern maritime Antarctic – clues to history?" Soil Biology & Biochemistry Vol 38, 3141-3151. DOI: 10.1016/J.Soilbio.2005.12.007 [Crossref]
39. McGill L.M., Shannon A.J., Pisani D., Felix M.A., Ramlov H., Dix I., Wharton D.A., Burnell A.M. (2015). "Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats". PLOS ONE Vol 10, e0116084. DOI: 10.1371/Journal.Pone.0116084
40. Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G. , et al (2014). "Phylogenomics resolves the timing and pattern of insect evolution". Science Vol 346, 763-767. DOI: 10.1126/science.1257570 [Crossref]
41. Nicholas W.L. (1984). The biology of free-living nematodes. Oxford, UK, Oxford University Press.
42. Nkem J.N., Wall D.H., Virginia R.A., Barrett J.E., Broos E.J., Porazinska D.L., Adams B.J. (2006). "Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica". Polar Biology Vol 29, 346-352. DOI: 10.1007/S00300-005-0061-X [Crossref]
43. Overhoff A., Freckman D.W., Virginia R.A. (1993). "Life-cycle of the microbivorous Antarctic dry valley nematode Scottnema lindsayae (Timm 1971)". Polar Biology Vol 13, 151-156. [Crossref]
44. Poinar G.O. Jr, Boucot A.J. (2006). "Evidence of intestinal parasites of dinosaurs". Parasitology Vol 133, 245-249. DOI: 10.1017/S0031182006000138 [Crossref]
45. Pugh P.J.A., Convey P. (2008). "Surviving out in the cold: Antarctic endemic invertebrates and their refugia". Journal of Biogeography Vol 35, 2176-2186. DOI: 10.1111/J.1365-2699.2008.01953.X [Crossref]
46. Rota-Stabelli O., Daley A.C., Pisani D. (2013). "Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution". Current Biology Vol 23, 392-398. DOI: 10.1016/j.cub.2013.01.026 [Crossref]
47. Schnyder J., Dejax J., Keppens E., Tu T.T.N., Spagna P., Boulila S., Galbrun B., Riboulleau A., Tshibangu J.P., Yans J. (2009). "An Early Cretaceous lacustrine record: organic matter and organic carbon isotopes at Bernissart (Mons Basin, Belgium)". Palaeogeography Palaeoclimatology Palaeoecology Vol 281, 79-91. DOI: 10.1016/J.Palaeo.2009.07.014 [Crossref]
48. Shannon A.J., Browne J.A., Boyd J., Fitzpatrick D.A., Burnell A.M. (2005). "The anhydrobiotic potential and molecular phylogenetics of species and strains of Panagrolaimus (Nematoda, Panagrolaimidae)". Journal of Experimental Biology Vol 208, 2433-2445. DOI: 10.1242/jeb.01629 [Crossref]
49. Stein L.D., Bao Z.R., Blasiar D., Blumenthal T., Brent M.R., Chen N.S., Chinwalla A., Clarke L., Clee C., Coghlan A. , et al (2003). "The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics". PLOS Biology Vol 1, 166-192. DOI: 10.1371/Journal.Pbio.0000045 [Crossref]
50. Stock S.P., Nadler S.A. (2006). "Morphological and molecular characterisation of Panagrellus spp. (Cephalobina: Panagrolaimidae): taxonomic status and phylogenetic relationships". Nematology Vol 8, 921-938. DOI: 10.1163/156854106779799277 [Crossref]
51. Stocsits R.R., Letsch H., Hertel J., Misof B., Stadler P.F. (2009). "Accurate and efficient reconstruction of deep phylogenies from structured RNAs". Nucleic Acids Research Vol 37, 6184-6193. DOI: 10.1093/Nar/Gkp600 [Crossref]
52. Thorne J.L., Kishino H., Painter I.S. (1998). "Estimating the rate of evolution of the rate of molecular evolution". Molecular Biology and Evolution Vol 15, 1647-1657. [Crossref]
53. Treonis A.M., Wall D.H., Virginia R.A. (2000). "The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys". Functional Ecology Vol 14, 460-467. DOI: 10.1046/J.1365-2435.2000.00442.X [Crossref]
54. Vanfleteren J.R., Van de Peer Y., Blaxter M.L., Tweedie S.A., Trotman C., Lu L., Van Hauwaert M.-L., Moens L. (1994). "Molecular genealogy of some nematode taxa as based on cytochrome c and globin amino acid sequences". Molecular Phylogenetics and Evolution Vol 3, 92-101. DOI: 10.1006/mpev.1994.1012 [Crossref]
55. Welch J.J., Bromham L. (2005). "Molecular dating when rates vary". Trends in Ecology & Evolution Vol 20, 320-327. DOI: 10.1016/j.tree.2005.02.007 [Crossref]
56. Wharton D.A., Barclay S. (1993). "Anhydrobiosis in the free-living antarctic nematode Panagrolaimus davidi (Nematoda: Rhabditida)". Fundamental and Applied Nematology Vol 16, 17-22.
57. Wharton D.A., Brown I.M. (1989). "A survey of terrestrial nematodes from the McMurdo Sound region, Antarctica". New Zealand Journal of Zoology Vol 16, 467-470. DOI: 10.1080/03014223.1989.10422914 [Crossref]
58. Wharton D.A., Ferns D.J. (1995). "Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi". Journal of Experimental Biology Vol 198, 1381-1387.
59. Wharton D.A., Raymond M.R. (2015). "Cold tolerance of the Antarctic nematodes Plectus murrayi and Scottnema lindsayae". Journal of Comparative Physiology B – Biochemical Systemic and Environmental Physiology Vol 185, 281-289. DOI: 10.1007/s00360-014-0884-2 [Crossref]
60. Wharton D.A., Goodall G., Marshall C.J. (2002). "Freezing rate affects the survival of a short-term freezing stress in Panagrolaimus davidi, an Antarctic nematode that survives intracellular freezing". CryoLetters Vol 23, 5-10.
61. Yang Z.H., Rannala B. (2006). "Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds". Molecular Biology and Evolution Vol 23, 212-226. DOI: 10.1093/molbev/msj024 [Crossref]
62. Zhi D.J., Li H.Y., Nan W.B. (2008). "Nematode communities in the artificially vegetated belt with or without irrigation in the Tengger Desert, China". European Journal of Soil Biology Vol 44, 238-246. DOI: 10.1016/j.ejsobi.2007.09.006 [Crossref]
63. Zuckerkandl E., Pauling L.B. (1962). "Molecular disease, evolution and genic heterogeneity". In: Kasha M., Pullman B. (Eds). Horizons in biochemistry: Albert Szent-Györgyi dedicatory volume. New York, NY, USA, Academic Press, pp.  97-166.
http://brill.metastore.ingenta.com/content/journals/10.1163/15685411-00003096
Loading

Article metrics loading...

/content/journals/10.1163/15685411-00003096
2017-10-04
2018-04-19

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation