Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Characterisation of the effects on proteases of Heterodera glycines and Meloidogyne incognita second-stage juveniles by inhibitors obtained from cysts of H. glycines

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

The protease inhibitor component of Heterodera glycines cyst contents was explored using a battery of peptide substrates and H. glycines and Meloidogyne incognita second-stage juveniles as enzyme sources. Protease inhibitors were prepared by heat-denaturing H. glycines cyst-egg extract (hHglCE), which was used in all inhibition exploration. Eight substrates targeting four endoprotease groups (aspartic, cysteine, metallo- and serine proteases) revealed that protease inhibition by hHglCE varied significantly between H. glycines and M. incognita with seven of the eight substrates. Only cysteine protease activity was inhibited equally between H. glycines and M. incognita. Aspartic protease activity was inhibited more strongly in H. glycines and serine protease activity was inhibited more strongly in M. incognita. Digestion of five matrix metalloprotease (MMP) substrates was inhibited more strongly in H. glycines (two substrates) and M. incognita (three substrates). These variations were particularly intriguing given the potential association of MMP proteases with developing embryos. Inhibition of digestion of nematode FMRFamide-like peptides (FLPs) showed less variation between nematode species than the targeted substrates, but inhibition did vary significantly across substrates within each species. Digestion of FLP-6 was the least affected by hHglCE but was inhibited significantly more in M. incognita than in H. glycines. Residue differences between two FLP-14 sequences significantly affected inhibition of FLP-14 digestion in both H. glycines and M. incognita. RP-HPLC fractionation of hHglCE clearly demonstrated the presence of high (Fr No.5) and low (Fr No.14) polarity inhibitor components. Potency of inhibition of M. incognita serine protease activity, based upon IC50 values (1.68 and 2.78 hHglCEeq reaction−1 for Fr No.5 and Fr No.14, respectively), was reduced significantly from unfractionated hHglCE (IC50 = 0.61), suggesting inhibitor dilution, loss of component synergy, or both, due to fractionation.

Affiliations: 1: USDA-ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD, USA

Loading

Full text loading...

/content/journals/10.1163/15685411-00003151
Loading

Data & Media loading...

1. Atkinson L.E., Miskelly I.R., Moffett C.L., McCoy C.J., Maule A.G., Marks N.J., Mousley A. (2016). "Unravelling flp-11/flp-32 dichotomy in nematodes". International Journal for Parasitology Vol 46, 723-736. DOI: 10.1016/j.ijpara.2016.05.010 [Crossref]
2. Barrett A.J., Rawlings N.D., Woessner J.F. (2004). Handbook of proteolytic enzymes, 2nd edition. San Diego, CA,USA, Elsevier.
3. Bird D.McK., Jones J.T., Opperman C.H., Kikuchi T., Danchin E.G. (2015). "Signatures of adaptation to plant parasitism in nematode genomes". Parasitology Vol 142, S71-S84. DOI: 10.1017/S0031182013002163 [Crossref]
4. Charlson D.V., Tylka G.L. (2003). "Heterodera glycines cyst components and surface disinfestants affect H. glycines hatching". Journal of Nematology Vol 35, 458-464.
5. Chitwood D.J. (2003). "Nematicides". In: Plimmer J. (Ed.). Encyclopedia of agrochemicals. New York, NY, USA, Wiley, pp.  1104-1115. DOI: 10.1002/047126363X.agr171
6. Haegeman A., Mantelin S., Jones J.T., Gheysen G. (2012). "Functional roles of effectors of plant-parasitic nematodes". Gene Vol 492, 19-31. DOI: 10.1016/j.gene.2011.10.040 [Crossref]
7. Jones J., Gheysen G., Fenoll C. (Eds). (2011). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer. DOI: 10.1007/978-94-007-0434-3
8. Jones J.T., Haegeman A., Danchin E.G.J., Gaur H., Helder J., Jones M.G.K., Kikuchi T., Manzanilla-López R., Palomares-Rius J.E., Wesemael W.M.L. , et al (2013). "Top 10 plant-parasitic nematodes in molecular plant pathology". Molecular Plant Pathology Vol 14, 946-961. DOI: 10.1111/mpp.12057 [Crossref]
9. Kikuchi T., Cotton J.A., Dalzell J.J., Hasegawa K., Kanzaki N., McVeigh P., Takanashi T., Tsai I., Assefa S.A., Cock P.J.A. , et al (2011). "Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus". PLoS Pathogens Vol 7, e1002219. DOI: 10.1371/journal.ppat.1002219 [Crossref]
10. Kovaleva E.S., Masler E.P., Skantar A.M., Chitwood D.J. (2004). "Novel matrix metalloproteinase from the cyst nematodes Heterodera glycines and Globodera rostochiensis". Molecular & Biochemical Parasitology Vol 136, 109-112. DOI: 10.1016/j.molbiopara.2004.03.001 [Crossref]
11. Li C., Kim K. (2010). "Neuropeptide gene families in Caenorhabditis elegans". In: Geary T.G., Maule A.G. (Eds). Neuropeptide systems as targets for pest and parasite control. New York, NY, USA, Landes Biosciences and Springer, pp.  98-137. [Crossref]
12. Lilley C.J., Atkinson H.J., Urwin P.E. (2005). "Molecular aspects of cyst nematodes". Molecular Plant Pathology Vol 6, 577-588. DOI: 10.1111/J.1364-3703.2005.00306.X [Crossref]
13. Masler E.P. (2013). "A comparison of the FMRFamide-like peptide proteolytic activities of preparations from two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita): possible targets for novel control". Journal of Helminthology Vol 87, 71-77. DOI: 10.1017/S0022149X12000053 [Crossref]
14. Masler E.P. (2015). "Protease inhibition by Heterodera glycines cyst content: evidence for effects on the Meloidogyne incognita proteasome". Nematology Vol 17, 91-102. DOI: 10.1163/15685411-00002854 [Crossref]
15. Masler E.P., Chitwood D.J. (2016). "Heterodera glycines cysts contain an extensive array of endoproteases as well as inhibitors of proteases in H. glycines and Meloidogyne incognita infective juvenile stages". Nematology Vol 18, 489-499. DOI: 10.1163/15685411-00002972 [Crossref]
16. Masler E.P., Chitwood D.J. (2017). "Evaluation of proteases and protease inhibitors in Heterodera glycines cysts obtained from laboratory and field populations". Nematology Vol 19, 109-120. DOI: 10.1163/15685411-00003035 [Crossref]
17. Masler E.P., Rogers S.T. (2011). "Effects of cyst components and low temperature exposure of Heterodera glycines eggs on juvenile hatching in vitro". Nematology Vol 13, 837-844. DOI: 10.1163/138855410X552689 [Crossref]
18. McIlvaine T.C. (1921). "A buffer solution for colorimetric comparison". Journal of Biological Chemistry Vol 49, 183-186.
19. Moens M., Perry R.N., Starr J.L. (2009). "Meloidogyne species – a diverse group of novel and important plant parasites". In: Perry R.N., Moens M., Starr J.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp.  1-17. DOI: 10.1079/9781845934927.0000.3 [Crossref]
20. Nguyen T.T., Qasim M.A., Morris S., Lu C.-C., Hill D., Laskowski M. Jr, Sakanari J.A. , et al (1999). "Expression and characterization of elastase inhibitors from ascarid nematodes Anisakis simplex and Ascaris suum". Molecular and Biochemical Parasitology Vol 102, 79-89. DOI: 10.1016/S0166-6851(99)00088-2 [Crossref]
21. Niblack T.L., Lambert K.N., Tylka G.L. (2006). "A model plant pathogen from the kingdom Animalia: Heterodera glycines, the soybean cyst nematode". Annual Review of Phytopathology Vol 44, 283-303. DOI: 10.1146/annurev.phyto.43.040204.140218 [Crossref]
22. Nicol J.M., Turner S.J., Coyne D.L., den Nijs L., Hockland S., Tanha Maafi Z. (2011). "Current nematode threats to world agriculture". In: Jones J., Gheysen G., Fenoll C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp.  21-43. DOI: 10.1007/978-94-007-0434-3 [Crossref]
23. Ntalli N., Caboni P. (2012). "Botanical nematicides: a review". Journal of Agricultural and Food Chemistry Vol 60, 9929-9940. DOI: 10.1021/jf303107j [Crossref]
24. Oka Y. (2010). "Mechanisms of nematode suppression by organic soil amendments-a review". Applied Soil Ecology Vol 44, 101-115. DOI: 10.1016/j.apsoil.2009.11.003 [Crossref]
25. Okada T. (1972). "Hatching inhibitory factor in the cyst contents of the soybean cyst nematode, Heterodera glycines Ichinohe (Tylenchida: Heteroderidae)". Applied Entomology and Zoology Vol 7, 99-102. [Crossref]
26. Okada T. (1974). "Effects of hatching stimulants obtained from cyst contents of Heterodera species (Tylenchida: Heteroderidae) on the hatching of other species". Applied Entomology and Zoology Vol 9, 49-51. [Crossref]
27. Page-McCaw A. (2008). "Remodeling the model organism: matrix metalloproteinase functions in invertebrates". Seminars in Cell & Developmental Biology Vol 19, 14-23. DOI: 10.1016/j.semcdb.2007.06.004 [Crossref]
28. Palomares-Rius J.E., Hedley P., Cock P.J.A., Morris J.A., Jones J.T., Blok V.C. (2016). "Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate". PeerJ Vol 4, e1654. DOI: 10.7717/peerj.1654 [Crossref]
29. Perry R.N., Moens M. (2011). "Introduction to plant-parasitic nematodes: modes of parasitism". In: Jones J., Gheysen G., Fenoll C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Heidelberg, Germany, Springer, pp.  3-20. DOI: 10.1007/978-94-007-0434-3 [Crossref]
30. Peymen K., Watteyne J., Frooninckx L., Schoofs L., Beets I. (2014). "The FMRFamide-like peptide family in nematodes". Frontiers in Endocrinology Vol 5, 90. DOI: 10.3389/fendo.2014.00090 [Crossref]
31. Pridannikov M.V., Petelina G.G., Palchuk M.V., Masler E.P., Dzhavakhiya V.G. (2007). "Influence of components of Globodera rostochiensis cysts on the in vitro hatch of second-stage juveniles". Nematology Vol 9, 837-844. DOI: 10.1163/156854107782331126 [Crossref]
32. Rawlings N.D., Barrett A.J., Finn R. (2016). "Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors". Nucleic Acids Research Vol 44, D343-D350. DOI: 10.1093/narl/gkv1118 [Crossref]
33. Reynolds A.M., Dutta T.K., Curtis R.H.C., Powers S.J., Gaur H.S., Kerry B.R. (2011). "Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes". Journal of the Royal Society Interface Vol 8, 568-577. DOI: 10.1098/rsif.2010.0417 [Crossref]
34. Rhoads M.L., Fetterer R.H., Hill D.E., Urban J.F. Jr (2000). "Trichuris suis: a secretory chymotrypsin/elastase inhibitor with potential as an immunomodulatory". Experimental Parasitology Vol 95, 36-44. DOI: 10.1006/expr.2000.4502 [Crossref]
35. Sardanelli S., Kenworthy W.L. (1997). "Soil moisture control and direct seeding for bioassay of Heterodera glycines on soybean". Journal of Nematology Vol 29, 625-634.
36. Sasser J.N., Freckman D.W. (1987). "A world perspective on nematology: the role of the Society". In: Veech J.A., Dickson D.W. (Eds). Vistas on nematology. Hyattsville, MD, USA, Society of Nematologists, pp.  7-14.
37. Vieira P., Eves-van den Akker S., Verma R., Wantoch S., Eisenback J.D., Kamo K. (2015). "The Pratylenchus penetrans transcriptome as a source for the development of alternative control strategies: mining and putative genes involved in parasitism and evaluation of in planta RNAi". PLoS ONE Vol 10(12), e0144674. DOI: 10.1371/journal.pone.0144674 [Crossref]
38. Zhang F., Peng D., Ye X., Yu Z., Hu Z., Ruan L., Sun M. (2012). "In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla". PLoS ONE Vol 7, e38534. DOI: 10.1371/journal.pone.0038534
http://brill.metastore.ingenta.com/content/journals/10.1163/15685411-00003151
Loading

Article metrics loading...

/content/journals/10.1163/15685411-00003151
2018-06-01
2018-09-26

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Nematology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation