Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access A cilia-mediated environmental input induces solitary behaviour in Caenorhabditis elegans and Pristionchus pacificus nematodes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

A cilia-mediated environmental input induces solitary behaviour in Caenorhabditis elegans and Pristionchus pacificus nematodes

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Nematology
For more content, see Nematologica.

Nematodes respond to a multitude of environmental cues. For example, the social behaviours clumping and bordering were described as a mechanism of hyperoxia avoidance in Caenorhabditis elegans and Pristionchus pacificus. A recent study in P. pacificus revealed a novel regulatory pathway that inhibits social behaviour in a response to an as yet unknown environmental cue. This environmental signal is recognised by ciliated neurons, as mutants defective in intraflagellar transport (IFT) proteins display social behaviours. The IFT machinery represents a large protein complex and many mutants in genes encoding IFT proteins are available in C. elegans. However, social phenotypes in C. elegans IFT mutants have never been reported. Here, we examined 15 previously isolated C. elegans IFT mutants and found that most of them showed strong social behaviour. These findings indicate conservation in the inhibitory mechanism of social behaviour between P. pacificus and C. elegans.

Affiliations: 1: Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany

*Corresponding author, e-mail: ralf.sommer@tuebingen.mpg.de

Nematodes respond to a multitude of environmental cues. For example, the social behaviours clumping and bordering were described as a mechanism of hyperoxia avoidance in Caenorhabditis elegans and Pristionchus pacificus. A recent study in P. pacificus revealed a novel regulatory pathway that inhibits social behaviour in a response to an as yet unknown environmental cue. This environmental signal is recognised by ciliated neurons, as mutants defective in intraflagellar transport (IFT) proteins display social behaviours. The IFT machinery represents a large protein complex and many mutants in genes encoding IFT proteins are available in C. elegans. However, social phenotypes in C. elegans IFT mutants have never been reported. Here, we examined 15 previously isolated C. elegans IFT mutants and found that most of them showed strong social behaviour. These findings indicate conservation in the inhibitory mechanism of social behaviour between P. pacificus and C. elegans.

Loading

Full text loading...

/deliver/journals/15685411/20/3/15685411_020_03_s001_text.html?itemId=/content/journals/10.1163/15685411-00003159&mimeType=html&fmt=ahah
/content/journals/10.1163/15685411-00003159
Loading

Data & Media loading...

1. Andersen E.C., Bloom J.S., Gerke J.P., Kruglyak L. (2014). "A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology". PLoS Genetics Vol 10, e1004156. DOI: 10.1371/journal.pgen.1004156 [Crossref]
2. Bargmann C.I. (2006). Chemosensation in C. elegans. WormBook. DOI: 10.1895/wormbook.1.123.1
3. Burghoorn J.A., Piasecki B.P., Crona F., Phirke P., Jeppsson K.E., Swoboda P. (2012). "The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box". Developmental Biology Vol 368, 415-426. DOI: 10.1016/j.ydbio.2012.05.033 [Crossref]
4. Collet J., Spike C.A., Lundquist E.A., Shaw J.E., Herman R.K. (1998). "Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans". Genetics Vol 148, 187-200.
5. de Bono M., Bargmann C.I. (1998). "Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans". Cell Vol 94, 679-689. DOI: 10.1016/S0092-8674(00)81609-8 [Crossref]
6. de Bono M., Tobin D.M., Davis M.W., Avery L., Bargmann C.I. (2002). "Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli". Nature Vol 419, 899-903. DOI: 10.1038/nature01169 [Crossref]
7. Efimenko E., Blacque O.E., Ou G., Haycraft C.J., Yoder B.K., Scholey J.M., Leroux M.R., Swoboda P. (2006). "Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia". Molecular Biology of the Cell Vol 17, 4801-4811. DOI: 10.1091/mbc.E06-04-0260 [Crossref]
8. Frézaland L., Félix M.-A. (2015). "The natural history of model organisms: C. elegans outside the Petri dish". eLife Vol 4, e05849. DOI: 10.7554/eLife.05849.001
9. Golden J.W., Riddle D.L. (1985). "A gene affecting production of the Caenorhabditis elegans dauer-inducing pheromone". Molecular Genetics and Genomics Vol 198, 534-536. [Crossref]
10. Gray J.M., Karow D.S., Lu H., Chang A.J., Chang J.S., Ellis R.E., Marletta M.A., Bargmann C.I. (2004). "Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue". Nature Vol 430, 317-322. DOI: 10.1038/nature02714 [Crossref]
11. Inglis P.N., Ou G., Leroux M.R., Scholey J.M. (2006). The sensory cilia of Caenorhabditis elegans. WormBook. DOI: 10.1895/wormbook.1.126
12. Kunitomo H., Iino Y. (2008). "Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation". Genes to Cells Vol 13, 13-25. DOI: 10.1111/j.1365-2443.2007.01147.x [Crossref]
13. Ludewig A.H., Schroeder F.C. (2013). Ascaroside signaling in C. elegans. WormBook. DOI: 10.1895/wormbook.1.155.1
14. Macosko E.Z., Pokala N., Feinberg E.H., Chalasani S.H., Butcher R.A., Clardy J., Bargmann C.I. (2009). "A hub-and-spoke circuit drives pheromone attraction and social behavior in C. elegans". Nature Vol 458, 1171-1175. DOI: 10.1038/nature07886 [Crossref]
15. Markov G.V., Meyer J.M., Panda O., Artyukhin A.B., Claaßen M., Witte H., Schroeder F.C., Sommer R.J. (2016). "Functional conservation and divergence of daf-22 paralogs in Pristionchus pacificus dauer development". Molecular Biology and Evolution Vol 10, 2506-2514. DOI: 10.1093/molbev/msw090 [Crossref]
16. Moreno E., McGaughran A., Rödelsperger C., Zimmer M., Sommer R.J. (2016). "Oxygen-induced social behaviours in Pristionchus pacficus have a distinct evolutionary history and genetic regulation from Caenorhabditis elegans". Proceedings of the Royal Society B: Biological Sciences Vol 283, 20152263. DOI: 10.1098/rspb.2015.2263 [Crossref]
17. Moreno E., Sieriebriennikov B., Witte H., Rödelsperger C., Lightfoot J.W., Sommer R.J. (2017). "Regulation of hyperoxia-induced social behaviour in Pristionchus pacificus nematodes requires a novel cilia-mediated environmental input". Scientific Reports Vol 7, 17550. DOI: 10.1038/s41598-017-18019-0
18. Ou G., Blacque O.E., Snow J.J., Leroux M.R., Scholey J.M. (2005). "Functional coordination of intraflagellar transport motors". Nature Vol 436, 583-587. DOI: 10.1038/nature03818 [Crossref]
19. Rogers C., Reale V., Kim K., Chatwin H., Li C., Evans P., de Bono M. (2003). "Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1". Nature Neuroscience Vol 6, 1178-1185. DOI: 10.1038/nn1140 [Crossref]
20. Srinivasan J., Kaplan F., Ajredini R., Zachariah C., Alborn H.T., Teal P.E.A., Malik R.U., Edison A.S., Sternberg P.W., Schroeder F.C. (2008). "A blend of small molecules regulates both mating and development in Caenorhabditis elegans". Nature Vol 454, 1115-1118. DOI: 10.1038/nature07168 [Crossref]
21. Sterken M.G., Snoek L.B., Kammenga J.E., Andersen E.C. (2015). "The laboratory domestication of Caenorhabditis elegans". Trends in Genetics Vol 31, 224-231. DOI: 10.1016/j.tig.2015.02.009 [Crossref]
22. Sulston J., Hodgkin J. (1988). "Methods". In: Wood W.B. (Ed.). The nematode Caenorhabditis elegans . Cold Spring Harbor, NY, USA, Cold Spring Harbor Laboratory, pp.  587-606.
23. Tabish M., Siddiqui Z.K., Nishikawa K., Siddiqui S.S. (1995). "Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment". Journal of Molecular Biology Vol 247, 377-389. DOI: 10.1006/jmbi.1994.0146 [Crossref]
24. Taschner M., Lorentzen E. (2016). "The intraflagellar transport machinery". Cold Spring Harbor Perspectives in Biology Vol 8, a028092. DOI: 10.1101/cshperspect.a028092 [Crossref]
25. Weber K.P., De S., Kozarewa I., Turner D.J., Babu M.M., de Bono M. (2010). "Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans". PLoS ONE Vol 5, e13922. DOI: 10.1371/journal.pone.0013922
26. Wicks S.R., de Vries C.J., van Luenen H.G.A.M., Plasterk R.H.A. (2000). "CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans". Developmental Biology Vol 221, 295-307. DOI: 10.1006/dbio.2000.968 [Crossref]
27. Zimmer M., Gray J.M., Pokala N., Chang A.J., Karow D.S., Marletta M.A., Hudson M.L., Morton D.B., Chronis N., Bargmann C.I. (2009). "Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases". Neuron Vol 61, 865-879. DOI: 10.1016/j.neuron.2009.02.013 [Crossref]
http://brill.metastore.ingenta.com/content/journals/10.1163/15685411-00003159
Loading
Loading

Article metrics loading...

/content/journals/10.1163/15685411-00003159
2018-05-03
2018-06-19

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation