Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Lizard Locomotion: How Morphology Meets Ecology

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Netherlands Journal of Zoology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Animal Biology (Vol 53 and onwards).

Biological evolution often leads, through natural selection, to an optimal fit between 'design' and ecology. However, the adaptation process may be impeded or slowed down by several constraints or trade-offs between conflicting functions. This is frequently observed by ecomorphological studies focusing on lower taxonomic levels: form-function relationships get blurred because subtle adaptive traits remain hidden or simply do not exist. Therefore, a rigorous analytic approach is required, (ideally) assessing the links between the four stages of the adaptive process simultaneously (i.e., from genetic variation to variation in design, to variation in performance, to differential fitness), taking into consideration all potential factors hindering the normal progression of this process. Lizard locomotion is a good model for such an analysis. Locomotion is essential in many ecologically relevant functions (feeding, predator avoidance, etc.). It consists of several components (speed, acceleration, endurance, manoeuvrability, etc.) and modes (level running, climbing, etc.) with conflicting demands, leading to potential trade-offs. Moreover, several of its components proved to be heritable and obvious relations between habitat use and locomotor design are often absent (e.g., in lacertid lizards). Two cases, focusing on the potential trade-off between climbing and level-running, are presented to illustrate the subtle interplay between variation in ecology, performance and design in lizard locomotion. (1) For two gekkotans (a climber and a ground dwelling species) the moments exerted by several important leg muscles appear to be tuned to their primary mode of locomotion. (2) In two sibling lacertid species, the inverse trade-off between climbing and running, put forward on the basis of observed substrate use, does not exist. Instead, a drastic difference in running performance, likely related to different running styles, emerged. The latter case illustrates the potential use of 'integrated, dynamic design traits' as an intermediate stage between variation in design and performance.

Affiliations: 1: Department of Biology, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk (Antwerpen), Belgium


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Netherlands Journal of Zoology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation