Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

How To Hunt for Hiding Hosts: the Reliability-Detectability Problem in Foraging Parasitoids

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Netherlands Journal of Zoology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Animal Biology (Vol 53 and onwards).

Foraging parasitoids may use stimuli that are derived from their host or from the food of their host, often plants. But how usable are 2nd and 1st trophic level stimuli and what is their relative importance in parasitoid foraging? It is argued that foraging parasitoids are facing a reliability-detectability problem: host-derived stimuli are the most reliable in indicating host presence, accessibility and suitability but they are generally hard to detect. Plant stimuli, on the other hand, are easier to detect but arc generally less reliable indicators. Parasitoids have evolved different non-exclusive strategies to solve this problem. (1) Infochemical detour: parasitoids resort to information from other, more detectable, host stages than the one under attack. (2) Herbivore-induced synomones: parasitoids use specific plant produced volatiles that are released upon damage by a specific herbivore species. In the present paper we put most emphasis on a third strategy (3) Associative learning: through associative learning parasitoids link easy-to-detect stimuli to reliable but hard-to-detect stimuli. Specific mechanisms by which associative learning can improve foraging success are discussed.

Affiliations: 1: (Department of Entomology, Wageningen Agricultural University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Netherlands Journal of Zoology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation